Diversity-Aware Ensembling of Language Models Based on Topological Data
Analysis
- URL: http://arxiv.org/abs/2402.14184v1
- Date: Thu, 22 Feb 2024 00:04:21 GMT
- Title: Diversity-Aware Ensembling of Language Models Based on Topological Data
Analysis
- Authors: Polina Proskura, Alexey Zaytsev
- Abstract summary: Existing approaches mostly rely on simple averaging of predictions by ensembles with equal weights for each model.
We propose to estimate weights for ensembles of NLP models using not only knowledge of their individual performance but also their similarity to each other.
- Score: 3.1734682813501514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensembles are important tools for improving the performance of machine
learning models. In cases related to natural language processing, ensembles
boost the performance of a method due to multiple large models available in
open source. However, existing approaches mostly rely on simple averaging of
predictions by ensembles with equal weights for each model, ignoring
differences in the quality and conformity of models. We propose to estimate
weights for ensembles of NLP models using not only knowledge of their
individual performance but also their similarity to each other. By adopting
distance measures based on Topological Data Analysis (TDA), we improve our
ensemble. The quality improves for both text classification accuracy and
relevant uncertainty estimation.
Related papers
- A Statistical Framework for Ranking LLM-Based Chatbots [57.59268154690763]
We propose a statistical framework that incorporates key advancements to address specific challenges in pairwise comparison analysis.
First, we introduce a factored tie model that enhances the ability to handle groupings of human-judged comparisons.
Second, we extend the framework to model covariance tiers between competitors, enabling deeper insights into performance relationships.
Third, we resolve optimization challenges arising from parameter non-uniqueness by introducing novel constraints.
arXiv Detail & Related papers (2024-12-24T12:54:19Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - A Comparison of Modeling Preprocessing Techniques [0.0]
This paper compares the performance of various data processing methods in terms of predictive performance for structured data.
Three data sets of various structures, interactions, and complexity were constructed.
We compare several methods for feature selection, categorical handling, and null imputation.
arXiv Detail & Related papers (2023-02-23T14:11:08Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Analyzing Bagging Methods for Language Models [0.5161531917413708]
We perform an analysis of bagging language models and compare single language models to bagged ensembles that are roughly equivalent in terms of final model size.
Our ensembling methods are at best roughly equivalent to single LM baselines.
arXiv Detail & Related papers (2022-07-19T06:30:37Z) - How not to Lie with a Benchmark: Rearranging NLP Leaderboards [0.0]
We examine popular NLP benchmarks' overall scoring methods and rearrange the models by geometric and harmonic mean.
We analyze several popular benchmarks including GLUE, SuperGLUE, XGLUE, and XTREME.
arXiv Detail & Related papers (2021-12-02T15:40:52Z) - Conceptually Diverse Base Model Selection for Meta-Learners in Concept
Drifting Data Streams [3.0938904602244355]
We present a novel approach for estimating the conceptual similarity of base models, which is calculated using the Principal Angles (PAs) between their underlying subspaces.
We evaluate these methods against thresholding using common ensemble pruning metrics, namely predictive performance and Mutual Information (MI) in the context of online Transfer Learning (TL)
Our results show that conceptual similarity thresholding has a reduced computational overhead, and yet yields comparable predictive performance to thresholding using predictive performance and MI.
arXiv Detail & Related papers (2021-11-29T13:18:53Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Ensemble Learning-Based Approach for Improving Generalization Capability
of Machine Reading Comprehension Systems [0.7614628596146599]
Machine Reading (MRC) is an active field in natural language processing with many successful developed models in recent years.
Despite their high in-distribution accuracy, these models suffer from two issues: high training cost and low out-of-distribution accuracy.
In this paper, we investigate the effect of ensemble learning approach to improve generalization of MRC systems without retraining a big model.
arXiv Detail & Related papers (2021-07-01T11:11:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.