論文の概要: Multivariate Online Linear Regression for Hierarchical Forecasting
- arxiv url: http://arxiv.org/abs/2402.14578v1
- Date: Thu, 22 Feb 2024 14:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 14:52:35.583771
- Title: Multivariate Online Linear Regression for Hierarchical Forecasting
- Title(参考訳): 階層的予測のための多変量オンライン線形回帰
- Authors: Massil Hihat, Guillaume Garrigos, Adeline Fermanian, Simon Bussy
- Abstract要約: 我々は、よく知られたVovk-Azoury-Warmuthアルゴリズムを多変量設定に拡張するMultiVAWを紹介する。
本稿では,オンライン階層予測問題に適用し,この論文からアルゴリズムを復元する。
- 参考スコア(独自算出の注目度): 1.5361702135159843
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we consider a deterministic online linear regression model
where we allow the responses to be multivariate. To address this problem, we
introduce MultiVAW, a method that extends the well-known Vovk-Azoury-Warmuth
algorithm to the multivariate setting, and show that it also enjoys logarithmic
regret in time. We apply our results to the online hierarchical forecasting
problem and recover an algorithm from this literature as a special case,
allowing us to relax the hypotheses usually made for its analysis.
- Abstract(参考訳): 本稿では,応答を多変量化できる決定論的オンライン線形回帰モデルについて考察する。
この問題に対処するために,よく知られたVovk-Azoury-Warmuthアルゴリズムを多変量設定に拡張する手法であるMultiVAWを導入する。
我々は,オンライン階層予測問題に適用し,この論文からアルゴリズムを特殊事例として回収し,その解析のために通常行われている仮説を緩和する。
関連論文リスト
- Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
本稿では,事前学習した潜在拡散モデルを利用した線形逆問題の解法を初めて提案する。
線形モデル設定において,証明可能なサンプル回復を示すアルゴリズムを理論的に解析する。
論文 参考訳(メタデータ) (2023-07-02T17:21:30Z) - Robust Regularized Low-Rank Matrix Models for Regression and
Classification [14.698622796774634]
本稿では,ランク制約,ベクトル正規化(疎性など),一般損失関数に基づく行列変分回帰モデルのフレームワークを提案する。
アルゴリズムは収束することが保証されており、アルゴリズムのすべての累積点が$O(sqrtn)$100の順序で推定誤差を持ち、最小値の精度をほぼ達成していることを示す。
論文 参考訳(メタデータ) (2022-05-14T18:03:48Z) - Machine Learning for Multi-Output Regression: When should a holistic
multivariate approach be preferred over separate univariate ones? [62.997667081978825]
ランダムフォレストのような木に基づくアンサンブルは、統計学の手法の中で近代的な古典である。
これらの手法を広範囲なシミュレーションで比較し,多変量アンサンブル技術を用いた場合の主問題に答える。
論文 参考訳(メタデータ) (2022-01-14T08:44:25Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Stochastic Online Linear Regression: the Forward Algorithm to Replace
Ridge [24.880035784304834]
オンラインリッジ回帰とフォワードアルゴリズムに対して高い確率的後悔境界を導出する。
これにより、オンライン回帰アルゴリズムをより正確に比較し、有界な観測と予測の仮定を排除できる。
論文 参考訳(メタデータ) (2021-11-02T13:57:53Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Online Orthogonal Matching Pursuit [6.6389732792316005]
疎線形回帰のランダムな設計設定におけるオンラインサポート回復のための新しいオンラインアルゴリズム:オンライン直交マッチング法(OOMP)を提案する。
提案手法は,候補となる特徴にのみ必要なサンプルの割り当てと,回帰係数を推定するために選択した変数集合の最適化を逐次的に選択する。
論文 参考訳(メタデータ) (2020-11-22T21:59:05Z) - A spectral algorithm for robust regression with subgaussian rates [0.0]
本研究では, 試料の分布に強い仮定がない場合の線形回帰に対する2次時間に対する新しい線形アルゴリズムについて検討する。
目的は、データが有限モーメントしか持たなくても最適な準ガウス誤差を達成できる手順を設計することである。
論文 参考訳(メタデータ) (2020-07-12T19:33:50Z) - Sparse Methods for Automatic Relevance Determination [0.0]
まず、自動妥当性決定(ARD)について検討し、スパースモデルを実現するために、追加の正規化やしきい値設定の必要性を解析的に実証する。
次に、正規化ベースとしきい値ベースという2つの手法のクラスについて論じる。
論文 参考訳(メタデータ) (2020-05-18T14:08:49Z) - Multiscale Non-stationary Stochastic Bandits [83.48992319018147]
本稿では,非定常線形帯域問題に対して,Multiscale-LinUCBと呼ばれる新しいマルチスケール変更点検出法を提案する。
実験結果から,提案手法は非定常環境下での他の最先端アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-13T00:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。