Applying Reinforcement Learning to Optimize Traffic Light Cycles
- URL: http://arxiv.org/abs/2402.14886v1
- Date: Thu, 22 Feb 2024 07:37:04 GMT
- Title: Applying Reinforcement Learning to Optimize Traffic Light Cycles
- Authors: Seungah Son and Juhee Jin
- Abstract summary: We propose the application of reinforcement learning to optimize traffic light cycles in real-time.
We present a case study using the Simulation Urban Mobility simulator to train a Deep Q-Network algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manual optimization of traffic light cycles is a complex and time-consuming
task, necessitating the development of automated solutions. In this paper, we
propose the application of reinforcement learning to optimize traffic light
cycles in real-time. We present a case study using the Simulation Urban
Mobility simulator to train a Deep Q-Network algorithm. The experimental
results showed 44.16% decrease in the average number of Emergency stops,
showing the potential of our approach to reduce traffic congestion and improve
traffic flow. Furthermore, we discuss avenues for future research and
enhancements to the reinforcement learning model.
Related papers
- A Predictive and Optimization Approach for Enhanced Urban Mobility Using Spatiotemporal Data [0.0]
This study introduces a novel method for enhancing urban mobility by combining machine learning algorithms with live traffic information.
We developed predictive models for journey time and congestion analysis using data from New York City's yellow taxi trips.
This research contributes to ongoing efforts aimed at reducing urban congestion and improving transportation efficiency through advanced data-driven methods.
arXiv Detail & Related papers (2024-10-07T16:16:49Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - Traffic control using intelligent timing of traffic lights with reinforcement learning technique and real-time processing of surveillance camera images [0.0]
The optimal timing of traffic lights is determined and applied according to several parameters.
Deep learning methods were used in vehicle detection using the YOLOv9-C model.
The use of transfer learning along with retraining the model on images of Iranian cars has increased the accuracy of the model.
arXiv Detail & Related papers (2024-05-22T00:04:32Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Back to Basics: Deep Reinforcement Learning in Traffic Signal Control [3.2880869992413255]
This paper revisits some of the fundamental premises for a reinforcement learning (RL) approach to self-learning traffic lights.
We propose RLight, a combination of choices that offers robust performance and good generalization to unseen traffic flows.
Evaluations using the real-world Hangzhou traffic dataset show that RLight outperforms state-of-the-art rule-based and deep reinforcement learning algorithms.
arXiv Detail & Related papers (2021-09-15T09:36:23Z) - A First Look at Class Incremental Learning in Deep Learning Mobile
Traffic Classification [68.11005070665364]
We explore Incremental Learning (IL) techniques to add new classes to models without a full retraining, hence speeding up model's updates cycle.
We consider iCarl, a state of the art IL method, and MIRAGE-2019, a public dataset with traffic from 40 Android apps.
Despite our analysis reveals their infancy, IL techniques are a promising research area on the roadmap towards automated DL-based traffic analysis systems.
arXiv Detail & Related papers (2021-07-09T14:28:16Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.