論文の概要: Mirror: A Multiple-perspective Self-Reflection Method for Knowledge-rich Reasoning
- arxiv url: http://arxiv.org/abs/2402.14963v2
- Date: Mon, 24 Jun 2024 10:05:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 01:51:30.680381
- Title: Mirror: A Multiple-perspective Self-Reflection Method for Knowledge-rich Reasoning
- Title(参考訳): Mirror: 知識豊富な推論のための多視点自己回帰法
- Authors: Hanqi Yan, Qinglin Zhu, Xinyu Wang, Lin Gui, Yulan He,
- Abstract要約: 大規模言語モデル(LLM)は、外部リソースにアクセスすることなく知識に富んだ問題に対処する。
知識豊富な推論のための多重パースペクティブ自己回帰法であるMirrorを提案する。
- 参考スコア(独自算出の注目度): 18.5717357875955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large language models (LLMs) have the capability to iteratively reflect on their own outputs, recent studies have observed their struggles with knowledge-rich problems without access to external resources. In addition to the inefficiency of LLMs in self-assessment, we also observe that LLMs struggle to revisit their predictions despite receiving explicit negative feedback. Therefore, We propose Mirror, a Multiple-perspective self-reflection method for knowledge-rich reasoning, to avoid getting stuck at a particular reflection iteration. Mirror enables LLMs to reflect from multiple-perspective clues, achieved through a heuristic interaction between a Navigator and a Reasoner. It guides agents toward diverse yet plausibly reliable reasoning trajectory without access to ground truth by encouraging (1) diversity of directions generated by Navigator and (2) agreement among strategically induced perturbations in responses generated by the Reasoner. The experiments on five reasoning datasets demonstrate that Mirror's superiority over several contemporary self-reflection approaches. Additionally, the ablation study studies clearly indicate that our strategies alleviate the aforementioned challenges.
- Abstract(参考訳): 大規模言語モデル(LLM)は,自らの出力を反復的に反映する能力を持っているが,近年の研究では,外部リソースにアクセスすることなく,知識に富んだ問題との戦いが観察されている。
自己評価におけるLLMの非効率性に加えて,LLMは負のフィードバックを受けながら予測の再検討に苦慮していることも観察した。
そこで本稿では,知識豊富な推論のための多視点自己回帰手法であるMirrorを提案する。
Mirrorは、ナビゲータとReasonerの間のヒューリスティックな相互作用によって達成された、複数のパースペクティブな手がかりからLLMを反映することを可能にする。
エージェントは(1)ナビゲータが生み出す方向の多様性と(2)リーソナーが生み出す反応における戦略的に誘発される摂動の合意を奨励することにより、地上の真実にアクセスすることなく多様で信頼性の高い推論軌道へ誘導する。
5つの推論データセットに関する実験は、ミラーが複数の現代の自己回帰アプローチよりも優れていることを示した。
さらに、アブレーション研究は、我々の戦略が上記の課題を緩和することを明確に示している。
関連論文リスト
- Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Meta-Reflection: A Feedback-Free Reflection Learning Framework [57.14485943991588]
外部からのフィードバックを伴わずに単一の推論パスのみを必要とするフィードバックフリーリフレクション機構であるメタリフレクションを提案する。
過去のリフレクションを記憶し、取り出す人間の能力によって、メタリフレクションはコードブックに反射的な洞察を統合する。
実世界のシナリオにおけるメタリフレクションの実践性を徹底的に検討し,評価するために,E-Commerce Customer Intent Detectionという産業eコマースベンチマークを導入する。
論文 参考訳(メタデータ) (2024-12-18T12:20:04Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - Blind Spot Navigation in LLM Reasoning with Thought Space Explorer [15.918115880403152]
我々はThought Space Explorer(TSE)を設計し、思考構造を拡張し、最適化し、大きな言語モデル(LLM)を誘導し、思考の盲点を探索する。
TSEは、様々な設計戦略により、元の思考構造に基づいて、新たな推論ステップと分岐を生成することにより、思考空間を広げ、LSM推論における盲点の影響を軽減する。
論文 参考訳(メタデータ) (2024-10-31T17:12:14Z) - Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms [7.550701021850185]
本研究では,大規模言語モデル (LLMs) が学生の反省会後リフレクションに役立てる可能性について検討する。
大学コンピュータサイエンス科でランダムフィールド実験を2回行った。
論文 参考訳(メタデータ) (2024-06-01T02:41:59Z) - Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives [45.87069217634753]
研究によると、外部からのフィードバックがなければ、Large Language Modelの本質的なリフレクションは不安定である。
我々の調査によると、重要なボトルネックは自己評価されたフィードバックの品質である。
要求に合わせて様々な解決の観点を適応的に探求し、相違点を対比し、これらの相違点を再検討し、相違点を排除するために使用できるチェックリストにまとめます。
論文 参考訳(メタデータ) (2024-01-04T00:32:33Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。