論文の概要: Seeing What's Not There: Spurious Correlation in Multimodal LLMs
- arxiv url: http://arxiv.org/abs/2503.08884v1
- Date: Tue, 11 Mar 2025 20:53:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:52.404431
- Title: Seeing What's Not There: Spurious Correlation in Multimodal LLMs
- Title(参考訳): 存在しないものを見る:マルチモーダルLCMにおける鮮やかな相関
- Authors: Parsa Hosseini, Sumit Nawathe, Mazda Moayeri, Sriram Balasubramanian, Soheil Feizi,
- Abstract要約: 我々は,人間の監督なしに刺激的な視覚的手がかりを自動的に識別するパイプラインであるSpurLensを紹介した。
MLLM(Multimodal Large Language Models)において,スプリアス相関が2つの大きな障害モードを引き起こすことが明らかとなった。
相関関係の持続性を明らかにすることにより,MLLMの信頼性を高めるため,より厳密な評価手法と緩和戦略が求められた。
- 参考スコア(独自算出の注目度): 47.651861502104715
- License:
- Abstract: Unimodal vision models are known to rely on spurious correlations, but it remains unclear to what extent Multimodal Large Language Models (MLLMs) exhibit similar biases despite language supervision. In this paper, we investigate spurious bias in MLLMs and introduce SpurLens, a pipeline that leverages GPT-4 and open-set object detectors to automatically identify spurious visual cues without human supervision. Our findings reveal that spurious correlations cause two major failure modes in MLLMs: (1) over-reliance on spurious cues for object recognition, where removing these cues reduces accuracy, and (2) object hallucination, where spurious cues amplify the hallucination by over 10x. We validate our findings in various MLLMs and datasets. Beyond diagnosing these failures, we explore potential mitigation strategies, such as prompt ensembling and reasoning-based prompting, and conduct ablation studies to examine the root causes of spurious bias in MLLMs. By exposing the persistence of spurious correlations, our study calls for more rigorous evaluation methods and mitigation strategies to enhance the reliability of MLLMs.
- Abstract(参考訳): 一様視覚モデルは急激な相関に頼っていることが知られているが、言語監督にもかかわらず、いかに多様言語モデル(MLLM)が同様のバイアスを示すかは定かではない。
本稿では,MLLMのスプリアスバイアスを調査し,GPT-4とオープンセットオブジェクト検出器を併用して人間の監督なしにスプリアス視覚的手がかりを自動的に識別するパイプラインであるSpurLensを紹介する。
以上の結果から,(1)物体認識における突発的手がかりの過度信頼度は,その除去精度を低下させ,(2)突発的手がかりが幻覚を10倍以上に増幅する,という2つの大きな障害モードがMLLMにおいて引き起こされることが明らかとなった。
各種MLLMおよびデータセットで本研究の成果を検証した。
これらの障害の診断の他に、早急なアンサンブルや推論に基づくプロンプトといった潜在的な緩和戦略を探求し、MLLMの急激な偏見の根本原因を調べるためにアブレーション研究を行う。
相関関係の持続性を明らかにすることにより,MLLMの信頼性を高めるため,より厳密な評価手法と緩和戦略が求められた。
関連論文リスト
- HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
本稿では,HuDExと命名された幻覚検出モデルについて説明する。
提案モデルでは,検出を説明と統合する新たなアプローチを提供し,ユーザとLLM自体がエラーを理解し,低減することができる。
論文 参考訳(メタデータ) (2025-02-12T04:17:02Z) - The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio [118.75449542080746]
本稿では,大規模マルチモーダルモデル(LMM)における幻覚に関する最初の系統的研究について述べる。
本研究は,幻覚に対する2つの重要な要因を明らかにした。
私たちの研究は、モダリティ統合の不均衡やトレーニングデータからのバイアスなど、重要な脆弱性を強調し、モダリティ間のバランスの取れた学習の必要性を強調した。
論文 参考訳(メタデータ) (2024-10-16T17:59:02Z) - MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs [38.93090238335506]
非意味な入力属性と予測対象変数の急激な相関を利用する傾向にあるスパースバイアスは、単一のモダリティデータに基づいて訓練されたディープラーニングモデルに深刻な落とし穴があることを明らかにした。
本稿では,9つの異なる相関関係のカテゴリに対するMLLMの信頼度を評価するために,包括的視覚質問応答(VQA)ベンチマークであるMM-SpuBenchを紹介する。
以上の結果から,これらのモデルからの素因相関への依存の持続性を明らかにし,素因バイアスを緩和する新たな手法の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-06-24T20:29:16Z) - MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries? [70.77691645678804]
人間は認知の歪みに傾向があり、特定の刺激に対する過大な反応を引き起こす偏見のある思考パターンがある。
本稿では,高度マルチモーダル言語モデル (MLLM) が同様の傾向を示すことを示す。
既存のMLLMの過敏性を引き起こす3種類の刺激を同定する。
論文 参考訳(メタデータ) (2024-06-22T23:26:07Z) - Analyzing LLM Behavior in Dialogue Summarization: Unveiling Circumstantial Hallucination Trends [38.86240794422485]
対話要約のための大規模言語モデルの忠実度を評価する。
私たちの評価は幻覚を構成するものに関して微妙な点を呈する。
既存の指標より優れた微細な誤差検出のための2つのプロンプトベースのアプローチを導入する。
論文 参考訳(メタデータ) (2024-06-05T17:49:47Z) - Hallucination of Multimodal Large Language Models: A Survey [40.73148186369018]
マルチモーダル大規模言語モデル(MLLM)は,多モーダルタスクにおいて顕著な進歩と顕著な能力を示した。
これらの有望な発展にもかかわらず、MLLMは視覚的内容と矛盾する出力をしばしば生成する。
本調査は,MLLMにおける幻覚の理解を深め,この分野のさらなる進歩を促すことを目的としている。
論文 参考訳(メタデータ) (2024-04-29T17:59:41Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective [9.633811630889237]
本稿では,視覚質問応答(VQA)問題におけるバイアスを解釈するための因果的枠組みを提案する。
マルチホップ推論を必要とする12,000の挑戦VQAインスタンスを備えた新しいデータセットを導入する。
実験の結果, MLLMはMOREに悪影響を及ぼし, 強い一方向偏差と限定的な意味理解を示すことがわかった。
論文 参考訳(メタデータ) (2024-03-27T08:38:49Z) - "Knowing When You Don't Know": A Multilingual Relevance Assessment Dataset for Robust Retrieval-Augmented Generation [90.09260023184932]
Retrieval-Augmented Generation (RAG) は、外部の知識源を活用して、事実の幻覚を減らすことで、Large Language Model (LLM) を出力する。
NoMIRACLは18言語にまたがるRAGにおけるLDM堅牢性を評価するための人為的アノテーション付きデータセットである。
本研究は,<i>Halucination rate</i>,<i>Halucination rate</i>,<i>Halucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sorucination rate</i>,<i>Sr。
論文 参考訳(メタデータ) (2023-12-18T17:18:04Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。