論文の概要: AI-Augmented Brainwriting: Investigating the use of LLMs in group
ideation
- arxiv url: http://arxiv.org/abs/2402.14978v2
- Date: Thu, 29 Feb 2024 22:47:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-04 13:42:42.061987
- Title: AI-Augmented Brainwriting: Investigating the use of LLMs in group
ideation
- Title(参考訳): AIによる増補型ブレインライト:グループ思考におけるLLMの利用を探る
- Authors: Orit Shaer, Angelora Cooper, Osnat Mokryn, Andrew L. Kun, Hagit Ben
Shoshan
- Abstract要約: 大規模言語モデル(LLM)のような生成AI技術は、創造的な作業に重大な影響を及ぼす。
本稿では,LLMを創造的プロセスに統合する2つの側面として,アイデア生成の分岐段階と,アイデアの評価と選択の収束段階について考察する。
我々は,グループ思考プロセスにLLMを組み込んだ協調グループAIブレインライト構想フレームワークを考案した。
- 参考スコア(独自算出の注目度): 11.503226612030316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing availability of generative AI technologies such as large language
models (LLMs) has significant implications for creative work. This paper
explores twofold aspects of integrating LLMs into the creative process - the
divergence stage of idea generation, and the convergence stage of evaluation
and selection of ideas. We devised a collaborative group-AI Brainwriting
ideation framework, which incorporated an LLM as an enhancement into the group
ideation process, and evaluated the idea generation process and the resulted
solution space. To assess the potential of using LLMs in the idea evaluation
process, we design an evaluation engine and compared it to idea ratings
assigned by three expert and six novice evaluators. Our findings suggest that
integrating LLM in Brainwriting could enhance both the ideation process and its
outcome. We also provide evidence that LLMs can support idea evaluation. We
conclude by discussing implications for HCI education and practice.
- Abstract(参考訳): 大規模言語モデル(LLMs)のような生成AI技術の普及は、創造的な作業に重大な影響を及ぼす。
本稿では, LLM を創造的プロセス, アイデア生成の分岐段階, およびアイデアの評価と選択の収束段階に統合する2つの側面について考察する。
我々は,LLMをグループ思考プロセスの強化として組み込んだ協調グループAIブレインライト構想フレームワークを考案し,アイデア生成プロセスと結果のソリューション空間を評価した。
アイデア評価プロセスにおけるLLMの使用可能性を評価するため,評価エンジンを設計し,これらを3人の専門家と6人の初心者によるアイデア評価と比較した。
以上の結果から,LEMを脳書記に組み込むことで,思考過程と結果の両面で向上できる可能性が示唆された。
また,LLMがアイデア評価を支持できることを示す。
我々は、HCI教育と実践の意義について論じる。
関連論文リスト
- IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
大規模言語モデル(LLM)は、人々が人工知能(AI)システムと対話する方法を変革した。
包括的データセットと評価フレームワークを含むベンチマークシステムであるIdeanBenchを提案する。
私たちのデータセットは、さまざまな影響力のある論文のタイトルと要約と、参照された作品で構成されています。
まず、GPT-4oを用いて、新規性や実現可能性などのユーザ固有の品質指標に基づいて、アイデアをランク付けし、スケーラブルなパーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-10-31T17:04:59Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
我々は、大規模言語モデルの知識を活用し、科学的アイデアのメリットを評価することを目的としたアイデアアセスメントに焦点をあてる。
我々は、このタスクに対する様々なアプローチのパフォーマンスを訓練し評価するために、細心の注意を払って設計された、フルテキストを持つ約4万の原稿からベンチマークデータセットをリリースする。
その結果, 大規模言語モデルの表現は, 生成出力よりもアイデアの価値を定量化する可能性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-09-07T02:07:22Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
大型言語モデル(LLM)は、科学的な発見を加速する可能性についての楽観主義を喚起した。
LLMシステムは、新しい専門家レベルのアイデアを生み出すための第一歩を踏み出すことができるという評価はない。
論文 参考訳(メタデータ) (2024-09-06T08:25:03Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Facilitating Holistic Evaluations with LLMs: Insights from Scenario-Based Experiments [0.22499166814992438]
経験豊富な教員チームでさえ、さまざまな視点に対応する総合的な評価を実現するのは難しいと感じています。
本稿では,多様な教員評価を統合するためのファシリテータとして,LLM(Large Language Model)の利用について検討する。
論文 参考訳(メタデータ) (2024-05-28T01:07:06Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play [43.55248812883912]
大規模言語モデル(LLM)は自然言語処理において例外的な習熟度を示してきたが、しばしばオープンエンドの質問に対する創造的で独創的な応答を生成できない。
LLM議論は,アイデア交換の活発化と多様化を促進する3段階の議論フレームワークである。
提案手法の有効性を, 代替利用テスト, 類似性テスト, インスタンステスト, 科学的創造性テストを用いて評価した。
論文 参考訳(メタデータ) (2024-05-10T10:19:14Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - "It Felt Like Having a Second Mind": Investigating Human-AI
Co-creativity in Prewriting with Large Language Models [20.509651636971864]
本研究では,前書き中の人間-LLM協調パターンとダイナミクスについて検討する。
共同作業では,3段階の反復的Human-AI共同創造プロセスが存在するようだ。
論文 参考訳(メタデータ) (2023-07-20T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。