SoK: What don't we know? Understanding Security Vulnerabilities in SNARKs
- URL: http://arxiv.org/abs/2402.15293v4
- Date: Thu, 11 Jul 2024 19:11:14 GMT
- Title: SoK: What don't we know? Understanding Security Vulnerabilities in SNARKs
- Authors: Stefanos Chaliasos, Jens Ernstberger, David Theodore, David Wong, Mohammad Jahanara, Benjamin Livshits,
- Abstract summary: Zero-knowledge proofs (ZKPs) have evolved from being a theoretical concept providing privacy and verifiability to having practical, real-world implementations.
SNARKs (Succinct Non-Interactive Argument of Knowledge) emerging as one of the most significant innovations.
This paper focuses on assessing end-to-end security properties of real-life SNARK implementations.
- Score: 8.190612719134606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-knowledge proofs (ZKPs) have evolved from being a theoretical concept providing privacy and verifiability to having practical, real-world implementations, with SNARKs (Succinct Non-Interactive Argument of Knowledge) emerging as one of the most significant innovations. Prior work has mainly focused on designing more efficient SNARK systems and providing security proofs for them. Many think of SNARKs as "just math," implying that what is proven to be correct and secure is correct in practice. In contrast, this paper focuses on assessing end-to-end security properties of real-life SNARK implementations. We start by building foundations with a system model and by establishing threat models and defining adversarial roles for systems that use SNARKs. Our study encompasses an extensive analysis of 141 actual vulnerabilities in SNARK implementations, providing a detailed taxonomy to aid developers and security researchers in understanding the security threats in systems employing SNARKs. Finally, we evaluate existing defense mechanisms and offer recommendations for enhancing the security of SNARK-based systems, paving the way for more robust and reliable implementations in the future.
Related papers
- Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
We present a comprehensive taxonomy of safety threats to large models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats.
We identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices.
arXiv Detail & Related papers (2025-02-02T05:14:22Z) - In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [104.94706600050557]
Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community.
We propose ICER, a novel red-teaming framework that generates interpretable and semantic meaningful problematic prompts.
Our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
arXiv Detail & Related papers (2024-11-25T04:17:24Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - Sok: Comprehensive Security Overview, Challenges, and Future Directions of Voice-Controlled Systems [10.86045604075024]
The integration of Voice Control Systems into smart devices accentuates the importance of their security.
Current research has uncovered numerous vulnerabilities in VCS, presenting significant risks to user privacy and security.
This study introduces a hierarchical model structure for VCS, providing a novel lens for categorizing and analyzing existing literature in a systematic manner.
We classify attacks based on their technical principles and thoroughly evaluate various attributes, such as their methods, targets, vectors, and behaviors.
arXiv Detail & Related papers (2024-05-27T12:18:46Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
This paper introduces an innovative approach by proposing a dynamic vulnerability criticality calculator.
Our methodology encompasses the analysis of environmental topology and the effectiveness of deployed security mechanisms.
Our approach integrates these factors into a comprehensive Fuzzy Cognitive Map model, incorporating attack paths to holistically assess the overall vulnerability score.
arXiv Detail & Related papers (2024-03-20T09:48:47Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
Federated Learning (FL) as a distributed machine learning paradigm has introduced new cybersecurity challenges.
This study proposes an innovative security framework inspired by Control-Flow (CFA) mechanisms, traditionally used in cybersecurity.
We authenticate and verify the integrity of model updates across the network, effectively mitigating risks associated with model poisoning and adversarial interference.
arXiv Detail & Related papers (2024-03-15T04:03:34Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
We present a new hybrid autonomous agent architecture that aims to optimize and verify defense policies of reinforcement learning (RL)
We use constraints verification (using satisfiability modulo theory (SMT)) to steer the RL decision-making toward safe and effective actions.
Our evaluation of the presented approach in a simulated CPS environment shows that the agent learns the optimal policy fast and defeats diversified attack strategies in 99% cases.
arXiv Detail & Related papers (2021-04-19T01:08:30Z) - SoK: A Modularized Approach to Study the Security of Automatic Speech
Recognition Systems [13.553395767144284]
We present our systematization of knowledge for ASR security and provide a comprehensive taxonomy for existing work based on a modularized workflow.
We align the research in this domain with that on security in Image Recognition System (IRS), which has been extensively studied.
Their similarities allow us to systematically study existing literature in ASR security based on the spectrum of attacks and defense solutions proposed for IRS.
In contrast, their differences, especially the complexity of ASR compared with IRS, help us learn unique challenges and opportunities in ASR security.
arXiv Detail & Related papers (2021-03-19T06:24:04Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.