Ranking Entities along Conceptual Space Dimensions with LLMs: An Analysis of Fine-Tuning Strategies
- URL: http://arxiv.org/abs/2402.15337v2
- Date: Wed, 5 Jun 2024 10:42:40 GMT
- Title: Ranking Entities along Conceptual Space Dimensions with LLMs: An Analysis of Fine-Tuning Strategies
- Authors: Nitesh Kumar, Usashi Chatterjee, Steven Schockaert,
- Abstract summary: We focus in particular on the task of ranking entities according to a given conceptual space dimension.
We analyse whether the ranking capabilities of the resulting models transfer to perceptual and subjective features.
- Score: 16.056028563680584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conceptual spaces represent entities in terms of their primitive semantic features. Such representations are highly valuable but they are notoriously difficult to learn, especially when it comes to modelling perceptual and subjective features. Distilling conceptual spaces from Large Language Models (LLMs) has recently emerged as a promising strategy, but existing work has been limited to probing pre-trained LLMs using relatively simple zero-shot strategies. We focus in particular on the task of ranking entities according to a given conceptual space dimension. Unfortunately, we cannot directly fine-tune LLMs on this task, because ground truth rankings for conceptual space dimensions are rare. We therefore use more readily available features as training data and analyse whether the ranking capabilities of the resulting models transfer to perceptual and subjective features. We find that this is indeed the case, to some extent, but having at least some perceptual and subjective features in the training data seems essential for achieving the best results.
Related papers
- Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.
Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning [19.399925987942204]
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks.
Our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems.
To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities.
arXiv Detail & Related papers (2024-10-21T16:26:09Z) - Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - Large Vision-Language Models as Emotion Recognizers in Context Awareness [14.85890824622433]
Context-aware emotion recognition (CAER) is a complex and significant task that requires perceiving emotions from various contextual cues.
Previous approaches primarily focus on designing sophisticated architectures to extract emotional cues from images.
This paper systematically explore the potential of leveraging Large Vision-Language Models (LVLMs) to empower the CAER task.
arXiv Detail & Related papers (2024-07-16T01:28:06Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning.
We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding.
arXiv Detail & Related papers (2024-06-19T06:15:26Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - Reasoning about concepts with LLMs: Inconsistencies abound [13.042591838719936]
Large language models (LLMs) often display and demonstrate significant inconsistencies in their knowledge.
In particular, we have been able to significantly enhance the performance of LLMs of various sizes with openly available weights.
arXiv Detail & Related papers (2024-05-30T15:38:54Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - Cabbage Sweeter than Cake? Analysing the Potential of Large Language
Models for Learning Conceptual Spaces [18.312837741635207]
We explore the potential of Large Language Models to learn conceptual spaces.
Our experiments show that LLMs can indeed be used for learning meaningful representations.
We also find that fine-tuned models of the BERT family are able to match or even outperform the largest GPT-3 model.
arXiv Detail & Related papers (2023-10-09T07:41:19Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.