Multi-graph Graph Matching for Coronary Artery Semantic Labeling
- URL: http://arxiv.org/abs/2402.15894v2
- Date: Wed, 14 Aug 2024 21:58:50 GMT
- Title: Multi-graph Graph Matching for Coronary Artery Semantic Labeling
- Authors: Chen Zhao, Zhihui Xu, Pukar Baral, Michel Esposito, Weihua Zhou,
- Abstract summary: We propose a multi-graph graph matching (MGM) algorithm for coronary artery semantic labeling.
The MGM algorithm assesses the similarity between arterials in multiple vascular tree graphs, considering the cycle consistency between each pair of graphs.
It achieves an impressive accuracy of 0.9471 for coronary artery semantic labeling using our multi-site dataset with 718 ICAs.
- Score: 4.238852424523291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary artery disease (CAD) stands as the leading cause of death worldwide, and invasive coronary angiography (ICA) remains the gold standard for assessing vascular anatomical information. However, deep learning-based methods encounter challenges in generating semantic labels for arterial segments, primarily due to the morphological similarity between arterial branches and varying anatomy of arterial system between different projection view angles and patients. To address this challenge, we model the vascular tree as a graph and propose a multi-graph graph matching (MGM) algorithm for coronary artery semantic labeling. The MGM algorithm assesses the similarity between arterials in multiple vascular tree graphs, considering the cycle consistency between each pair of graphs. As a result, the unannotated arterial segments are appropriately labeled by matching them with annotated segments. Through the incorporation of anatomical graph structure, radiomics features, and semantic mapping, the proposed MGM model achieves an impressive accuracy of 0.9471 for coronary artery semantic labeling using our multi-site dataset with 718 ICAs. With the semantic labeled arteries, an overall accuracy of 0.9155 was achieved for stenosis detection. The proposed MGM presents a novel tool for coronary artery analysis using multiple ICA-derived graphs, offering valuable insights into vascular health and pathology.
Related papers
- AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - A Comparative Study of Population-Graph Construction Methods and Graph
Neural Networks for Brain Age Regression [48.97251676778599]
In medical imaging, population graphs have demonstrated promising results, mostly for classification tasks.
extracting population graphs is a non-trivial task and can significantly impact the performance of Graph Neural Networks (GNNs)
In this work, we highlight the importance of a meaningful graph construction and experiment with different population-graph construction methods.
arXiv Detail & Related papers (2023-09-26T10:30:45Z) - Hyper Association Graph Matching with Uncertainty Quantification for
Coronary Artery Semantic Labeling [4.9679652736351905]
We propose an innovative approach using the hyper association graph-matching neural network with uncertainty quantification (HAGMN-UQ) for coronary artery semantic labeling on ICAs.
Our model achieved an accuracy of 0.9345 for coronary artery semantic labeling with a fast inference speed, leading to an effective and efficient prediction in real-time clinical decision-making scenarios.
arXiv Detail & Related papers (2023-08-20T16:59:17Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Coronary Artery Semantic Labeling using Edge Attention Graph Matching
Network [4.316187690050619]
Coronary artery disease (CAD) is one of the primary causes leading deaths worldwide.
We propose an innovative approach called the Edge Attention Graph Matching Network (EAGMN) for coronary artery semantic labeling.
arXiv Detail & Related papers (2023-05-21T03:14:42Z) - AGMN: Association Graph-based Graph Matching Network for Coronary Artery
Semantic Labeling on Invasive Coronary Angiograms [3.475534733052516]
We propose an association graph-based graph matching network (AGMN) for coronary arterial semantic labeling.
Our AGMN model achieved an average accuracy of 0.8264, an average precision of 0.8276, an average recall of 0.8264, and an average F1-score of 0.8262.
arXiv Detail & Related papers (2023-01-11T21:54:28Z) - Computed tomography coronary angiogram images, annotations and
associated data of normal and diseased arteries [8.516530964229814]
Computed Tomography Coronary Angiography (CTCA) is a non-invasive method to evaluate coronary artery anatomy and disease.
To our knowledge there is no public dataset that includes centrelines and segmentation of the full coronary tree.
Data can be used for a variety of research purposes, such as 3D printing patient-specific models, development and validation of segmentation algorithms, education and training of medical personnel and in-silico analyses such as testing of medical devices.
arXiv Detail & Related papers (2022-11-03T14:50:43Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Automated Intracranial Artery Labeling using a Graph Neural Network and
Hierarchical Refinement [45.85443690049826]
We propose a Graph Neural Network (GNN) method to label arteries by classifying types of nodes and edges in an attributed relational graph.
Our method achieved a node labeling accuracy of 97.5%, and 63.8% of scans were correctly labeled for all Circle of Willis nodes.
arXiv Detail & Related papers (2020-07-11T06:22:35Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.