論文の概要: Feature Selection Based on Orthogonal Constraints and Polygon Area
- arxiv url: http://arxiv.org/abs/2402.16026v1
- Date: Sun, 25 Feb 2024 08:20:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 15:40:56.774316
- Title: Feature Selection Based on Orthogonal Constraints and Polygon Area
- Title(参考訳): 直交制約と多角形領域に基づく特徴選択
- Authors: Zhenxing Zhang and Jun Ge and Zheng Wei and Chunjie Zhou and Yilei
Wang
- Abstract要約: 特徴選択の目的は、各特徴の重要性を評価することにより、認識タスクにおける特徴の最適なサブセットを選択することである。
本稿では,特徴ラベルを拡張した依存関係間の非単調線形探索を提案する。
実験結果から,本手法は識別依存を効果的にとらえるだけでなく,次元分類性能を低下させる従来の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 10.587608254638667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of feature selection is to choose the optimal subset of features for
a recognition task by evaluating the importance of each feature, thereby
achieving effective dimensionality reduction. Currently, proposed feature
selection methods often overlook the discriminative dependencies between
features and labels. To address this problem, this paper introduces a novel
orthogonal regression model incorporating the area of a polygon. The model can
intuitively capture the discriminative dependencies between features and
labels. Additionally, this paper employs a hybrid non-monotone linear search
method to efficiently tackle the non-convex optimization challenge posed by
orthogonal constraints. Experimental results demonstrate that our approach not
only effectively captures discriminative dependency information but also
surpasses traditional methods in reducing feature dimensions and enhancing
classification performance.
- Abstract(参考訳): 特徴選択の目的は,各特徴の重要性を評価することにより,認識タスクにおける特徴の最適部分集合を選択し,有効次元化を実現することである。
現在、提案されている特徴選択法は、しばしば特徴とラベルの間の識別的依存関係を見落としている。
そこで本稿では,ポリゴンの面積を考慮した新しい直交回帰モデルを提案する。
モデルは直感的に特徴とラベルの間の識別的な依存関係を捉えることができる。
さらに,直交制約による非凸最適化問題に効果的に取り組むために,ハイブリッドな非単調線形探索手法を用いる。
実験の結果,提案手法は識別的依存性情報を効果的に捉えるだけでなく,従来の特徴量削減手法や分類性能の向上にも有効であることがわかった。
関連論文リスト
- Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - Embedded Multi-label Feature Selection via Orthogonal Regression [45.55795914923279]
少なくとも2乗回帰に基づく最先端の組込みマルチラベル特徴選択アルゴリズムは、マルチラベルデータに十分な識別情報を保存できない。
複数ラベルの特徴選択を容易にするために, 組込み多ラベル特徴選択法を提案する。
10個の多ラベルデータセットの大規模な実験結果から,GRROORの有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T06:18:40Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Graph-based Extreme Feature Selection for Multi-class Classification
Tasks [7.863638253070439]
本研究は,多クラス分類タスクに適したグラフベースのフィルタ特徴選択手法に焦点をあてる。
分類作業に有用な情報をコードするオリジナルデータのスケッチを作成するために,選択した特徴の数を劇的に削減することを目的としている。
論文 参考訳(メタデータ) (2023-03-03T09:06:35Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Multivariate feature ranking of gene expression data [62.997667081978825]
ペアワイズ相関とペアワイズ整合性に基づく2つの新しい多変量特徴ランキング手法を提案する。
提案手法は, クラスタリング変動, チ・スクエアド, 相関, 情報ゲイン, ReliefF および Significance の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-03T17:19:53Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
非相関的かつ識別的特徴の選択は、教師なしの機能選択の重要な問題である。
非相関制約と $ell_2,1$-norm 正規化によって課される新しい一般化回帰モデルを提案する。
それは同時に同じ近所に属するこれらのデータ ポイントの分散を減らすこと無相関および差別的な特徴を選ぶことができます。
論文 参考訳(メタデータ) (2020-12-27T09:07:26Z) - On the Adversarial Robustness of LASSO Based Feature Selection [72.54211869067979]
検討されたモデルでは、悪意のある敵がデータセット全体を観察し、レスポンス値やフィーチャーマトリックスを慎重に修正する。
両レベルの最適化問題として、敵の修正戦略を定式化する。
合成および実データを用いた数値的な例は,本手法が効率的かつ効果的であることを示している。
論文 参考訳(メタデータ) (2020-10-20T05:51:26Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z) - IVFS: Simple and Efficient Feature Selection for High Dimensional
Topology Preservation [33.424663018395684]
本稿では,サンプル類似性保存を向上する簡易かつ効果的な特徴選択アルゴリズムを提案する。
提案アルゴリズムは、全データの対距離と位相パターンを適切に保存することができる。
論文 参考訳(メタデータ) (2020-04-02T23:05:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。