論文の概要: Discovering Artificial Viscosity Models for Discontinuous Galerkin Approximation of Conservation Laws using Physics-Informed Machine Learning
- arxiv url: http://arxiv.org/abs/2402.16517v2
- Date: Mon, 5 Aug 2024 16:02:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 23:36:13.539691
- Title: Discovering Artificial Viscosity Models for Discontinuous Galerkin Approximation of Conservation Laws using Physics-Informed Machine Learning
- Title(参考訳): 物理インフォームド・機械学習を用いた保存法則の不連続ガレルキン近似のための人工粘度モデルの検出
- Authors: Matteo Caldana, Paola F. Antonietti, Luca Dede',
- Abstract要約: 人工粘度モデルの発見を自動化する物理インフォームド機械学習アルゴリズムを提案する。
このアルゴリズムは強化学習にインスパイアされ、細胞ごとに作用するニューラルネットワークを訓練する。
このアルゴリズムは,最先端のルンゲ・クッタ不連続ガレルキン解法に組み込むことで有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finite element-based high-order solvers of conservation laws offer large accuracy but face challenges near discontinuities due to the Gibbs phenomenon. Artificial viscosity is a popular and effective solution to this problem based on physical insight. In this work, we present a physics-informed machine learning algorithm to automate the discovery of artificial viscosity models in a non-supervised paradigm. The algorithm is inspired by reinforcement learning and trains a neural network acting cell-by-cell (the viscosity model) by minimizing a loss defined as the difference with respect to a reference solution thanks to automatic differentiation. This enables a dataset-free training procedure. We prove that the algorithm is effective by integrating it into a state-of-the-art Runge-Kutta discontinuous Galerkin solver. We showcase several numerical tests on scalar and vectorial problems, such as Burgers' and Euler's equations in one and two dimensions. Results demonstrate that the proposed approach trains a model that is able to outperform classical viscosity models. Moreover, we show that the learnt artificial viscosity model is able to generalize across different problems and parameters.
- Abstract(参考訳): 有限要素法に基づく保存法則の高次解法は、高い精度を提供するが、ギブス現象による不連続性に近い課題に直面している。
人工粘性は、物理的洞察に基づくこの問題に対するポピュラーで効果的な解決策である。
本研究では,非教師付きパラダイムにおける人工粘性モデルの発見を自動化する物理インフォームド機械学習アルゴリズムを提案する。
このアルゴリズムは強化学習にインスパイアされ、自動微分による参照解に対する差として定義される損失を最小限に抑え、セルバイセル(粘性モデル)を作用するニューラルネットワークを訓練する。
これにより、データセットなしのトレーニング手順が可能になる。
このアルゴリズムは,最先端のルンゲ・クッタ不連続ガレルキン解法に組み込むことで有効であることを示す。
バーガーズ方程式やオイラー方程式のようなスカラーおよびベクトル問題に関するいくつかの数値実験を1次元と2次元で示す。
提案手法は,古典的粘度モデルより優れたモデルであることを示す。
さらに,学習した人工粘度モデルが,様々な問題やパラメータにわたって一般化可能であることを示す。
関連論文リスト
- Online Calibration of Deep Learning Sub-Models for Hybrid Numerical
Modeling Systems [34.50407690251862]
本稿では,ハイブリッドシステムのための効率的かつ実用的なオンライン学習手法を提案する。
オイラー勾配近似(Euler Gradient Approximation)のEGA(Euler Gradient Approximation)と呼ばれる手法は、無限に小さな時間ステップの極限における正確な勾配に収束することを示した。
その結果、オフライン学習よりも大幅に改善され、ハイブリッドモデリングにおけるエンド・ツー・エンドのオンライン学習の可能性を強調した。
論文 参考訳(メタデータ) (2023-11-17T17:36:26Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
本稿では,データからのスパース制御方程式の深部生成モデルを用いた動的モデリングフレームワークHyperSINDyを紹介する。
一度訓練すると、HyperSINDyは、係数が白色雑音によって駆動される微分方程式を介して力学を生成する。
実験では、HyperSINDyはデータと一致するように学習度をスケーリングすることで、基底的真理支配方程式を復元する。
論文 参考訳(メタデータ) (2023-10-07T14:41:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Automated Dissipation Control for Turbulence Simulation with Shell
Models [1.675857332621569]
機械学習(ML)技術の応用、特にニューラルネットワークは、画像や言語を処理する上で大きな成功を収めています。
本研究は,Gledzer-Ohkitani-yamadaシェルモデルを用いて,乱流の簡易表現を構築する。
本稿では,自己相似慣性範囲スケーリングなどの乱流の統計的特性を再構築する手法を提案する。
論文 参考訳(メタデータ) (2022-01-07T15:03:52Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Enhancement of shock-capturing methods via machine learning [0.0]
我々は不連続解を用いてPDEをシミュレートするための改良された有限体積法を開発した。
5階WENO法の結果を改善するためにニューラルネットワークを訓練する。
数値解が過度に拡散するシミュレーションにおいて,本手法はWENOよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-06T21:51:39Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。