論文の概要: Comparing resource requirements of noisy quantum simulation algorithms
for the Tavis-Cummings model
- arxiv url: http://arxiv.org/abs/2402.16692v1
- Date: Mon, 26 Feb 2024 16:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 20:11:19.993202
- Title: Comparing resource requirements of noisy quantum simulation algorithms
for the Tavis-Cummings model
- Title(参考訳): Tavis-Cummingsモデルに対するノイズ量子シミュレーションアルゴリズムのリソース要求の比較
- Authors: Alisa Haukisalmi, Matti Raasakka, Ilkka Tittonen
- Abstract要約: フォールトトレラントな量子コンピュータは、古典的な計算では不可能な量子システムのシミュレーションを促進することができる。
デバイスノイズを緩和するための量子エラー緩和(QEM)や、古典的な最適化とパラメータ化量子回路を組み合わせた変分量子アルゴリズム(VQA)などがある。
ゼロノイズ外挿法(ZNE)と回路折り畳みによる雑音増幅法、インクリメンタル構造学習法(ISL)を比較した。
システムサイズが小さい場合,ISL は ZNE よりも誤差が小さいが,ZNE が優れている 4 キュービットに対して正しいダイナミクスを生成できないことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault-tolerant quantum computers could facilitate the simulation of quantum
systems unfeasible for classical computation. However, the noisy
intermediate-scale quantum (NISQ) devices of the present and near term are
limited and their utilisation requires additional strategies. These include
quantum error mitigation (QEM) for alleviating device noise, and variational
quantum algorithms (VQAs) which combine classical optimization with
short-depth, parameterized quantum circuits. We compare two such methods:
zero-noise extrapolation (ZNE) with noise amplification by circuit folding, and
incremental structural learning (ISL), a type of circuit recompiling VQA. These
are applied to Trotterized time-evolution of the Tavis--Cummings model (TCM)
under a noise simulation. Since both methods add circuit evaluation overhead,
it is of interest to see how they compare both in the accuracy of the dynamics
they produce, and in terms of the quantum resources used. Additionally, noisy
recompilation of time-evolution circuits with ISL has not previously been
explored. We find that while ISL achieves lower error than ZNE for smaller
system sizes, it fails to produce correct dynamics for 4 qubits, where ZNE is
superior. Diverging resource requirements for ISL and ZNE are observed, with
ISL achieving low circuit depths at the cost of a large number of circuit
evaluations.
- Abstract(参考訳): フォールトトレラント量子コンピュータは、古典計算では実現不可能な量子システムのシミュレーションを促進することができる。
しかし、現在および近未来のノイズの多い中間スケール量子(NISQ)デバイスは制限されており、その利用にはさらなる戦略が必要である。
デバイスノイズを緩和するための量子エラー緩和(QEM)や、古典的な最適化とパラメータ化量子回路を組み合わせた変分量子アルゴリズム(VQA)などがある。
我々は、ゼロノイズ外挿法(ZNE)と回路折り畳みによるノイズ増幅法(ISL)と、VQAの回路再コンパイル方式であるインクリメンタル構造学習(ISL)を比較した。
これらは、ノイズシミュレーションによるTavis-Cummingsモデル(TCM)の時間進化に応用される。
どちらの手法も回路評価のオーバーヘッドを増大させるため、それらが生成する力学の精度と使用する量子資源の両面でどのように比較されるかは注目に値する。
さらに、ILLによる時間進化回路の雑音再コンパイルは、これまで検討されていない。
システムサイズが小さい場合,ISL は ZNE よりも誤差が小さいが,ZNE が優れている 4 キュービットに対して正しいダイナミクスを生成できないことがわかった。
ISLとZNEのリソース要件の多様化が観察され、ICLは多数の回路評価を犠牲にして低回路深度を実現している。
関連論文リスト
- Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
本稿では,時間進化演算子をコンパイルするためのハイブリッド量子古典アルゴリズムを提案する。
精度を保ちながら、トロッタライゼーションに比べて95%の回路深さの低減を実現している。
我々は,LSVQCを用いて,短期量子コンピューティングアーキテクチャ上での量子シミュレーションの実行に必要なゲート数を推定する。
論文 参考訳(メタデータ) (2024-07-19T09:50:01Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
量子回路(PQC)は、その主応用の範囲外ではまだ完全には理解されていない。
我々は、量子ビット接続性に関する制約の下で、PQCにおけるランダム状態の生成を分析する。
生成した状態の分布の均一性の増加と絡み合いの発生との間には,どれだけ急激な関係があるかを示す。
論文 参考訳(メタデータ) (2024-05-03T17:32:55Z) - Compressed-sensing Lindbladian quantum tomography with trapped ions [44.99833362998488]
量子システムの力学を特徴づけることは、量子情報プロセッサの開発における中心的な課題である。
従来の欠点を緩和するLindbladian quantum tomography(LQT)の2つの改良点を提案する。
論文 参考訳(メタデータ) (2024-03-12T09:58:37Z) - Towards Efficient Quantum Computing for Quantum Chemistry: Reducing Circuit Complexity with Transcorrelated and Adaptive Ansatz Techniques [0.0]
この研究は、Transcorrelated (TC) アプローチと適応量子アンゼの併用による回路深さの低減方法を示す。
本研究は, 適応型アンサーゼとTC法を組み合わせることで, 小型, 耐雑音性, 容易に最適化できる量子回路が得られることを示す。
論文 参考訳(メタデータ) (2024-02-26T15:31:56Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Classical simulations of noisy variational quantum circuits [0.0]
ノイズは量子計算に影響を及ぼし、より正確になるだけでなく、システムのスケールアップとともに古典的なシミュレートも容易になる。
ノイズパラメータ化量子回路の期待値を推定するための古典的シミュレーションアルゴリズムLOWESAを構築した。
論文 参考訳(メタデータ) (2023-06-08T17:52:30Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
我々は、絡み合ったスリム化可能な量子ニューラルネットワーク(eSQNN)の深さ制御可能なアーキテクチャを開発する。
本稿では,eS-QNNの重畳符号化パラメータを通信する絡み合ったスリム化QFL(eSQFL)を提案する。
画像分類タスクでは、広範囲なシミュレーションがeSQFLの有効性を裏付ける。
論文 参考訳(メタデータ) (2022-12-04T03:18:03Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
変分量子アルゴリズム(VQA)は、ノイズプロセッサを介して量子アドバンテージを得るための最も有望な経路を提供する。
不完全性とデコヒーレンスによるゲートノイズは、バイアスを導入して勾配推定に影響を与える。
QEM(Quantum error mitigation)技術は、キュービット数の増加を必要とせずに、推定バイアスを低減することができる。
QEMは必要な反復回数を減らすことができるが、量子ノイズレベルが十分に小さい限りである。
論文 参考訳(メタデータ) (2022-09-23T10:48:04Z) - Robust resource-efficient quantum variational ansatz through
evolutionary algorithm [0.46180371154032895]
Vari Quantum Algorithm (VQAsational) は、短期デバイスにおける量子優位性を実証するための有望な手法である。
我々は、広く使われているハードウェア効率の良いアンサッツのような固定VQA回路設計は、必ずしも不完全性に対して堅牢ではないことを示す。
本稿では,ゲノム長調整可能な進化アルゴリズムを提案し,回路アンサッツおよびゲートパラメータの変動に最適化されたロバストなVQA回路を設計する。
論文 参考訳(メタデータ) (2022-02-28T12:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。