論文の概要: Neural population geometry and optimal coding of tasks with shared latent structure
- arxiv url: http://arxiv.org/abs/2402.16770v2
- Date: Thu, 11 Apr 2024 17:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 18:26:07.384171
- Title: Neural population geometry and optimal coding of tasks with shared latent structure
- Title(参考訳): 共有潜在構造をもつタスクのニューラル集団幾何学と最適符号化
- Authors: Albert J. Wakhloo, Will Slatton, SueYeon Chung,
- Abstract要約: 4つの幾何学的測度がタスク間の性能を決定することを示す。
マルチタスク学習問題に対する最適解として,実験的に観察された不整合表現が自然に現れることがわかった。
- 参考スコア(独自算出の注目度): 4.490493754303233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans and animals can recognize latent structures in their environment and apply this information to efficiently navigate the world. However, it remains unclear what aspects of neural activity contribute to these computational capabilities. Here, we develop an analytical theory linking the geometry of a neural population's activity to the generalization performance of a linear readout on a set of tasks that depend on a common latent structure. We show that four geometric measures of the activity determine performance across tasks. Using this theory, we find that experimentally observed disentangled representations naturally emerge as an optimal solution to the multi-task learning problem. When data is scarce, these optimal neural codes compress less informative latent variables, and when data is abundant, they expand these variables in the state space. We validate our theory using macaque ventral stream recordings. Our results therefore tie population geometry to multi-task learning.
- Abstract(参考訳): 人間や動物は環境内の潜伏構造を認識し、この情報を用いて世界を効率的にナビゲートすることができる。
しかし、これらの計算能力に神経活動のどの側面が寄与するかは、まだ不明である。
そこで我々は,ニューラル集団の活動の幾何学と,共通の潜在構造に依存する一連のタスクに対する線形読み出しの一般化性能を結びつける解析理論を開発した。
4つの幾何学的測度がタスク間の性能を決定することを示す。
この理論を用いて,マルチタスク学習問題に対する最適解として,実験的に観察された不整合表現が自然に出現することを発見した。
データが不足している場合、これらの最適なニューラルネットワークは、情報的潜在変数を圧縮しにくくし、データが豊富であれば、状態空間内でこれらの変数を拡張する。
マカク気道流記録を用いて本理論を検証した。
この結果から,人口統計学とマルチタスク学習を結びつけた。
関連論文リスト
- Towards Utilising a Range of Neural Activations for Comprehending Representational Associations [0.6554326244334868]
ディープニューラルネットワークにおける中間表現をラベル付けするアプローチでは,その振る舞いに関する貴重な情報を捕捉できないことを示す。
非極端レベルのアクティベーションには、調査する価値のある複雑な情報が含まれていると仮定する。
そこで本研究では,中間領域のロジットサンプルから得られたデータを用いて,スプリアス相関を緩和する手法を開発した。
論文 参考訳(メタデータ) (2024-11-15T07:54:14Z) - Don't Cut Corners: Exact Conditions for Modularity in Biologically Inspired Representations [52.48094670415497]
我々は、生物にインスパイアされた表現が、ソース変数(ソース)に関してモジュール化されるときの理論を開発する。
我々は、最適な生物学的にインスパイアされたリニアオートエンコーダのニューロンがモジュラー化されるかどうかを判断する情報源のサンプルに対して、必要かつ十分な条件を導出する。
我々の理論はどんなデータセットにも当てはまり、以前の研究で研究された統計的な独立性よりもはるかに長い。
論文 参考訳(メタデータ) (2024-10-08T17:41:37Z) - Efficient, probabilistic analysis of combinatorial neural codes [0.0]
ニューラルネットワークは、個々のニューロンの活動の組み合わせの形で入力を符号化する。
これらのニューラルネットワークは、その高次元性としばしば大量のデータのため、計算上の課題を示す。
従来の手法を小さな例に適用し,実験によって生成された大きなニューラルコードに適用する。
論文 参考訳(メタデータ) (2022-10-19T11:58:26Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
異なるニューロンの活性化パターンの多様性は、モデル一般化と記憶の反映であることを示す。
重要なことは、情報組織が記憶の2つの形態を指していることである。
論文 参考訳(メタデータ) (2022-10-17T20:15:24Z) - Learnable latent embeddings for joint behavioral and neural analysis [3.6062449190184136]
CEBRAは、空間のマッピング、複雑なキネマティックな特徴の発見、視覚野からの自然映画の高速かつ高精度な復号化に利用できることを示す。
我々は、その精度を検証し、カルシウムと電気生理学の両方のデータセット、感覚と運動のタスク、そして種全体にわたる単純または複雑な振る舞いにその有用性を実証する。
論文 参考訳(メタデータ) (2022-04-01T19:19:33Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
ニューラルネットが問題の未特定化を扱う方法が,データ表現に大きく依存していることを示す。
深層学習におけるアーキテクチャ的インダクティブバイアスの理解は,これらのシステムの公平性,堅牢性,一般化に対処する上で基本的であることを強調した。
論文 参考訳(メタデータ) (2021-04-29T14:31:09Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
生体および人工ニューラルネットワークの機能に関する洞察を提供する幾何学的アプローチの例を概観する。
神経集団幾何学は、生体と人工のニューラルネットワークにおける構造と機能の理解を統一する可能性がある。
論文 参考訳(メタデータ) (2021-04-14T18:10:34Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。