LangGPT: Rethinking Structured Reusable Prompt Design Framework for LLMs from the Programming Language
- URL: http://arxiv.org/abs/2402.16929v2
- Date: Sat, 29 Jun 2024 14:19:08 GMT
- Title: LangGPT: Rethinking Structured Reusable Prompt Design Framework for LLMs from the Programming Language
- Authors: Ming Wang, Yuanzhong Liu, Xiaoyu Liang, Songlian Li, Yijie Huang, Xiaoming Zhang, Sijia Shen, Chaofeng Guan, Daling Wang, Shi Feng, Huaiwen Zhang, Yifei Zhang, Minghui Zheng, Chi Zhang,
- Abstract summary: We propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs.
LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse.
- Score: 23.692367748537517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to instruct LLMs proficiently poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. In addition, it is not conducive to the iterative updating of prompts. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the performance of LLMs. Moreover, the case study shows that LangGPT leads LLMs to generate higher-quality responses. Furthermore, we analyzed the ease of use and reusability of LangGPT through a user survey in our online community.
Related papers
- AssistRAG: Boosting the Potential of Large Language Models with an Intelligent Information Assistant [23.366991558162695]
Large Language Models generate factually incorrect information, known as "hallucination"
To cope with these challenges, we propose Assistant-based Retrieval-Augmented Generation (AssistRAG)
This assistant manages memory and knowledge through tool usage, action execution, memory building, and plan specification.
arXiv Detail & Related papers (2024-11-11T09:03:52Z) - Minstrel: Structural Prompt Generation with Multi-Agents Coordination for Non-AI Experts [22.500968440666398]
LangGPT is a structural prompt design framework.
Minstrel is a multi-generative agent system with reflection to automate the generation of structural prompts.
arXiv Detail & Related papers (2024-09-20T12:30:03Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization [19.200989737492595]
Large language models (LLMs) have shown great progress in responding to user questions.
The quality of LLM outputs heavily depends on the prompt design, where a good prompt might enable the LLM to answer a very challenging question correctly.
We propose a hierarchy of LLMs, first constructing a prompt with precise instructions and accurate wording in a hierarchical manner, and then using this prompt to generate the final answer to the user query.
arXiv Detail & Related papers (2024-05-30T17:05:45Z) - Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search [7.769411917500852]
We introduce a novel LLM-guided search framework (LLM-GS)
Our key insight is to leverage the programming expertise and common sense reasoning of LLMs to enhance the efficiency of assumption-free, random-guessing search methods.
We develop a search algorithm named Scheduled Hill Climbing, designed to efficiently explore the programmatic search space to improve the programs consistently.
arXiv Detail & Related papers (2024-05-26T06:33:48Z) - CourseGPT-zh: an Educational Large Language Model Based on Knowledge Distillation Incorporating Prompt Optimization [22.080563239179618]
Large language models (LLMs) have demonstrated astonishing capabilities in natural language processing (NLP) tasks.
We propose CourseGPT-zh, a course-oriented education LLM that supports customization and low-cost deployment.
arXiv Detail & Related papers (2024-05-08T03:11:12Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks.
This approach brings the additional computational burden of model inference and human effort to guide and control the behavior of LLMs.
We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.