論文の概要: Hyperdimensional Representation Learning for Node Classification and Link Prediction
- arxiv url: http://arxiv.org/abs/2402.17073v3
- Date: Thu, 27 Feb 2025 00:21:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 17:31:07.813141
- Title: Hyperdimensional Representation Learning for Node Classification and Link Prediction
- Title(参考訳): ノード分類とリンク予測のための超次元表現学習
- Authors: Abhishek Dalvi, Vasant Honavar,
- Abstract要約: 本稿では,グラフのノード分類とリンク予測のための新しい手法であるHyperdimensional Graph Learner (HDGL)を紹介する。
グラフニューラルネットワーク(GNN)系におけるノード表現の傾き特性を用いた高次元空間へのノード特徴のマッピング
本稿では,ノード分類タスクにおいて,最新のGNN手法と競合する精度を,計算コストを大幅に削減することを示すために,広く使用されているベンチマークデータセットを用いた実験結果について報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Hyperdimensional Graph Learner (HDGL), a novel method for node classification and link prediction in graphs. HDGL maps node features into a very high-dimensional space (\textit{hyperdimensional} or HD space for short) using the \emph{injectivity} property of node representations in a family of Graph Neural Networks (GNNs) and then uses HD operators such as \textit{bundling} and \textit{binding} to aggregate information from the local neighborhood of each node yielding latent node representations that can support both node classification and link prediction tasks. HDGL, unlike GNNs that rely on computationally expensive iterative optimization and hyperparameter tuning, requires only a single pass through the data set. We report results of experiments using widely used benchmark datasets which demonstrate that, on the node classification task, HDGL achieves accuracy that is competitive with that of the state-of-the-art GNN methods at substantially reduced computational cost; and on the link prediction task, HDGL matches the performance of DeepWalk and related methods, although it falls short of computationally demanding state-of-the-art GNNs.
- Abstract(参考訳): 本稿では,グラフのノード分類とリンク予測のための新しい手法であるHyperdimensional Graph Learner (HDGL)を紹介する。
HDGL はグラフニューラルネットワーク (GNN) の族におけるノード表現の \emph{injectivity} 特性を用いて、ノードの機能を非常に高次元の空間 (略して "\textit{hyperdimensional}" または HD 空間) にマッピングし、次に、ノード分類とリンク予測タスクの両方をサポートする潜在ノード表現を出力する各ノードの局所近傍からの情報を集約するために \textit{bundling} や \textit{binding} のような HD 演算子を使用する。
HDGLは計算コストのかかる反復最適化やハイパーパラメータチューニングに依存するGNNとは異なり、データセットを1回だけ通過するだけでよい。
本稿では,ノード分類タスクにおいて,最新のGNN手法と競合する精度を計算コストを大幅に削減した上で,HDGLがDeepWalkとその関連手法の性能に適合することを示すために,広く使用されているベンチマークデータセットを用いて実験を行った結果について報告する。
関連論文リスト
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
本稿では,集約中に含まれるノード数を削減する手法を提案する。
線形変換された特徴の重み付け和を用いてノード表現の近似を学習し、スパース分解によりこれを実現できる。
提案手法は推論高速化のために設計された他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T17:52:16Z) - CiliaGraph: Enabling Expression-enhanced Hyper-Dimensional Computation in Ultra-Lightweight and One-Shot Graph Classification on Edge [1.8726646412385333]
CiliaGraphはグラフ分類のための拡張表現型だが超軽量なHDCモデルである。
CiliaGraphはメモリ使用量を削減し、トレーニング速度を平均292倍に高速化する。
論文 参考訳(メタデータ) (2024-05-29T12:22:59Z) - Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching [0.27624021966289597]
本稿では,GLDGCNと呼ばれるグラフ学習型グラフ畳み込みニューラルネットワークを提案する。
半教師付きノード分類タスクにGLDGCNを適用する。
ベースライン手法と比較して,3つの引用ネットワークの分類精度が向上する。
論文 参考訳(メタデータ) (2024-04-19T09:08:12Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - High-Order Pooling for Graph Neural Networks with Tensor Decomposition [23.244580796300166]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ構造化データモデリングの有効性と柔軟性から、注目を集めている。
本稿では,高次非線形ノード相互作用をモデル化するためにテンソル分解に依存する高表現性GNNアーキテクチャであるGraphized Neural Network (tGNN)を提案する。
論文 参考訳(メタデータ) (2022-05-24T01:12:54Z) - GraphHD: Efficient graph classification using hyperdimensional computing [58.720142291102135]
本稿では,HDCを用いたグラフ分類のベースライン手法を提案する。
実世界のグラフ分類問題におけるGraphHDの評価を行った。
その結果,最新のグラフニューラルネットワーク (GNN) と比較すると,提案手法の精度は同等であることがわかった。
論文 参考訳(メタデータ) (2022-05-16T17:32:58Z) - BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and
Preprocessing [0.0]
グラフニューラルネットワーク(GNN)は、ディープニューラルネットワーク(DNN)の成功を非ユークリッドグラフデータに拡張した。
既存のシステムは、数十億のノードとエッジを持つ巨大なグラフをGPUでトレーニングする非効率である。
本稿では,ボトルネックに対処するための分散GNN学習システムであるBGLを提案する。
論文 参考訳(メタデータ) (2021-12-16T00:37:37Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
論文 参考訳(メタデータ) (2021-07-15T16:24:22Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graph Highway Networks [77.38665506495553]
グラフ畳み込みネットワーク(GCN)は、グラフ表現の有効性と効率性から、グラフ表現の学習に広く利用されている。
彼らは、多くの層が積み重ねられたとき、学習された表現が類似したベクトルに収束するという悪名高い過度に滑らかな問題に悩まされる。
本稿では,GCN学習プロセスにおける均一性と不均一性との間のトレードオフのバランスをとるため,ゲーティングユニットを利用したグラフハイウェイネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-09T16:26:43Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。