Generative Learning for Forecasting the Dynamics of Complex Systems
- URL: http://arxiv.org/abs/2402.17157v1
- Date: Tue, 27 Feb 2024 02:44:40 GMT
- Title: Generative Learning for Forecasting the Dynamics of Complex Systems
- Authors: Han Gao, Sebastian Kaltenbach, Petros Koumoutsakos
- Abstract summary: We introduce generative models for accelerating simulations of complex systems through learning and evolving their effective dynamics.
The results demonstrate that generative learning offers new frontiers for the accurate forecasting of the statistical properties of complex systems at a reduced computational cost.
- Score: 5.393540462038596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce generative models for accelerating simulations of complex
systems through learning and evolving their effective dynamics. In the proposed
Generative Learning of Effective Dynamics (G-LED), instances of high
dimensional data are down sampled to a lower dimensional manifold that is
evolved through an auto-regressive attention mechanism. In turn, Bayesian
diffusion models, that map this low-dimensional manifold onto its corresponding
high-dimensional space, capture the statistics of the system dynamics. We
demonstrate the capabilities and drawbacks of G-LED in simulations of several
benchmark systems, including the Kuramoto-Sivashinsky (KS) equation,
two-dimensional high Reynolds number flow over a backward-facing step, and
simulations of three-dimensional turbulent channel flow. The results
demonstrate that generative learning offers new frontiers for the accurate
forecasting of the statistical properties of complex systems at a reduced
computational cost.
Related papers
- Generative Learning of the Solution of Parametric Partial Differential Equations Using Guided Diffusion Models and Virtual Observations [4.798951413107239]
We introduce a generative learning framework to model high-dimensional parametric systems.
We consider systems described by Partial Differential Equations (PDEs) discretized with structured or unstructured grids.
arXiv Detail & Related papers (2024-07-31T20:52:33Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - Recurrent Deep Kernel Learning of Dynamical Systems [0.5825410941577593]
Digital twins require computationally-efficient reduced-order models (ROMs) that can accurately describe complex dynamics of physical assets.
We propose a data-driven, non-intrusive deep kernel learning (SVDKL) method to discover low-dimensional latent spaces from data.
Results show that our framework is capable of (i) denoising and reconstructing measurements, (ii) learning compact representations of system states, (iii) predicting system evolution in low-dimensional latent spaces, and (iv) modeling uncertainties.
arXiv Detail & Related papers (2024-05-30T07:49:02Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions.
We use deep learning to identify low-dimensional embeddings for high-fidelity dynamical systems.
arXiv Detail & Related papers (2021-11-25T10:09:00Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
We present a systematic framework that bridges large scale simulations and reduced order models to Learn the Effective Dynamics.
LED provides a novel potent modality for the accurate prediction of complex systems.
LED is applicable to systems ranging from chemistry to fluid mechanics and reduces computational effort by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-24T02:35:51Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.