Generative Learning of the Solution of Parametric Partial Differential Equations Using Guided Diffusion Models and Virtual Observations
- URL: http://arxiv.org/abs/2408.00157v1
- Date: Wed, 31 Jul 2024 20:52:33 GMT
- Title: Generative Learning of the Solution of Parametric Partial Differential Equations Using Guided Diffusion Models and Virtual Observations
- Authors: Han Gao, Sebastian Kaltenbach, Petros Koumoutsakos,
- Abstract summary: We introduce a generative learning framework to model high-dimensional parametric systems.
We consider systems described by Partial Differential Equations (PDEs) discretized with structured or unstructured grids.
- Score: 4.798951413107239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a generative learning framework to model high-dimensional parametric systems using gradient guidance and virtual observations. We consider systems described by Partial Differential Equations (PDEs) discretized with structured or unstructured grids. The framework integrates multi-level information to generate high fidelity time sequences of the system dynamics. We demonstrate the effectiveness and versatility of our framework with two case studies in incompressible, two dimensional, low Reynolds cylinder flow on an unstructured mesh and incompressible turbulent channel flow on a structured mesh, both parameterized by the Reynolds number. Our results illustrate the framework's robustness and ability to generate accurate flow sequences across various parameter settings, significantly reducing computational costs allowing for efficient forecasting and reconstruction of flow dynamics.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
The proposed framework consists of two stages, offline and online.
The online stage leverages those LANDO models to generate new data at a desired time instant.
dimensionality reduction technique is applied to high-dimensional dynamical systems to reduce the computational cost of training.
arXiv Detail & Related papers (2024-09-25T11:13:50Z) - Recurrent Deep Kernel Learning of Dynamical Systems [0.5825410941577593]
Digital twins require computationally-efficient reduced-order models (ROMs) that can accurately describe complex dynamics of physical assets.
We propose a data-driven, non-intrusive deep kernel learning (SVDKL) method to discover low-dimensional latent spaces from data.
Results show that our framework is capable of (i) denoising and reconstructing measurements, (ii) learning compact representations of system states, (iii) predicting system evolution in low-dimensional latent spaces, and (iv) modeling uncertainties.
arXiv Detail & Related papers (2024-05-30T07:49:02Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Generative Learning for Forecasting the Dynamics of Complex Systems [5.393540462038596]
We introduce generative models for accelerating simulations of complex systems through learning and evolving their effective dynamics.
The results demonstrate that generative learning offers new frontiers for the accurate forecasting of the statistical properties of complex systems at a reduced computational cost.
arXiv Detail & Related papers (2024-02-27T02:44:40Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
Advection-Dominated Systems [14.553972457854517]
We present a data-driven, space-time continuous framework to learn surrogatemodels for complex physical systems.
We leverage the expressive power of the network and aspecially designed consistency-inducing regularization to obtain latent trajectories that are both low-dimensional and smooth.
arXiv Detail & Related papers (2023-01-25T03:06:03Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.