論文の概要: Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
- arxiv url: http://arxiv.org/abs/2402.17570v3
- Date: Tue, 2 Jul 2024 17:25:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 07:39:17.788846
- Title: Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
- Title(参考訳): 地磁気摂動予測におけるスパース変分汚染ノイズガウス過程の回帰
- Authors: Daniel Iong, Matthew McAnear, Yuezhou Qu, Shasha Zou, Gabor Toth, Yang Chen,
- Abstract要約: 大規模なデータセットに正規ノイズが汚染されたスパースガウス過程回帰モデルを適用するためのスケーラブルな推論アルゴリズムを提案する。
提案手法は, 人工ニューラルネットワークベースラインと比較して, 類似のカバレッジと精度の予測間隔が短いことを示す。
- 参考スコア(独自算出の注目度): 4.675221539472143
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gaussian Processes (GP) have become popular machine-learning methods for kernel-based learning on datasets with complicated covariance structures. In this paper, we present a novel extension to the GP framework using a contaminated normal likelihood function to better account for heteroscedastic variance and outlier noise. We propose a scalable inference algorithm based on the Sparse Variational Gaussian Process (SVGP) method for fitting sparse Gaussian process regression models with contaminated normal noise on large datasets. We examine an application to geomagnetic ground perturbations, where the state-of-the-art prediction model is based on neural networks. We show that our approach yields shorter prediction intervals for similar coverage and accuracy when compared to an artificial dense neural network baseline.
- Abstract(参考訳): ガウス過程(GP)は、複雑な共分散構造を持つデータセット上でのカーネルベースの学習において、一般的な機械学習手法となっている。
本稿では,汚染された正規確率関数を用いたGPフレームワークの新たな拡張について述べる。
本研究では,スパース変分ガウス過程(SVGP)に基づく拡張性推論アルゴリズムを提案する。
本稿では,現状予測モデルがニューラルネットワークに基づく地磁気摂動への適用について検討する。
提案手法は, 人工ニューラルネットワークベースラインと比較して, 類似のカバレッジと精度の予測間隔が短いことを示す。
関連論文リスト
- Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count Data via Data Augmentation [8.114880112033644]
近年、GPFAはスパイクカウントデータをモデル化するために拡張されている。
本稿では,解析的および計算的抽出可能な推論が可能な条件共役型ガウス過程因子解析(ccGPFA)を提案する。
論文 参考訳(メタデータ) (2024-05-19T21:53:36Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
本稿では,深いガウス過程に対するニューラル演算子変分推論(NOVI)を提案する。
NOVIは、ニューラルジェネレータを使用してサンプリング装置を取得し、生成された分布と真の後部の間のL2空間における正規化スタインの離散性を最小化する。
提案手法が提案するバイアスは定数で発散を乗算することで制御可能であることを示す。
論文 参考訳(メタデータ) (2023-09-22T06:56:35Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
本稿では,一般的なガウスカーネルと,ランダムな特徴近似を用いてカーネルベースモデルを線形化する手法に着目する。
このような手法は、高周波データをモデル化する際、悪い結果をもたらすことを示すとともに、カーネル近似と下流性能を大幅に改善する新たなローカライズ手法を提案する。
論文 参考訳(メタデータ) (2022-04-12T09:52:36Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
局所近似過程回帰を用いて特定のひずみ空間における応力出力を予測する方法を示す。
FE設定におけるグローバル構造問題を解決する場合のlaGPR近似の局所的性質に適応するために、修正されたニュートン・ラフソン手法が提案される。
論文 参考訳(メタデータ) (2021-05-07T14:49:28Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
既存のほとんどのアプローチは、重い尾の分布から誘導される非ガウス的確率に、外れやすいガウス的確率を置き換えるものである。
提案手法は、未知の回帰関数の雑音および偏りの観測として、外れ値をモデル化する。
バイアス推定に基づいて、ロバストなGP回帰を標準のGP回帰問題に還元することができる。
論文 参考訳(メタデータ) (2020-01-14T06:21:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。