Many-body perturbation theory for strongly correlated effective Hamiltonians using effective field theory methods
- URL: http://arxiv.org/abs/2402.17627v3
- Date: Fri, 01 Nov 2024 15:24:14 GMT
- Title: Many-body perturbation theory for strongly correlated effective Hamiltonians using effective field theory methods
- Authors: Raphaƫl Photopoulos, Antoine Boulet,
- Abstract summary: We generalize the formulation of Rayleigh-Schr"odinger perturbation theory by including free parameters adjusted to reproduce the appropriate limits.
The ground state energy of various systems relevant for ultracold atomic, nuclear, and condensed matter physics is reproduced qualitatively beyond the domain of validity of the standard many-body theory.
- Score: 0.0
- License:
- Abstract: Introducing low-energy effective Hamiltonians is usual to grasp most correlations in quantum many-body problems. For instance, such effective Hamiltonians can be treated at the mean-field level to reproduce some physical properties of interest. Employing effective Hamiltonians that contain many-body correlations renders the use of perturbative many-body techniques difficult because of the overcounting of correlations. In this work, we develop a strategy to apply an extension of the many-body perturbation theory starting from an effective interaction that contains correlations beyond the mean field level. The goal is to re-organize the many-body calculation to avoid the overcounting of correlations originating from the introduction of correlated effective Hamiltonians in the description. For this purpose, we generalize the formulation of the Rayleigh-Schr\"odinger perturbation theory by including free parameters adjusted to reproduce the appropriate limits. In particular, the expansion in the bare weak-coupling regime and the strong-coupling limit serves as a valuable input to fix the value of the free parameters appearing in the resulting expression. This method avoids double counting of correlations using beyond-mean-field strategies for the description of many-body systems. The ground state energy of various systems relevant for ultracold atomic, nuclear, and condensed matter physics is reproduced qualitatively beyond the domain of validity of the standard many-body perturbation theory. Finally, our method suggests interpreting the formal results obtained as an effective field theory using the proposed reorganization of the many-body calculation. The results, like ground state energies, are improved systematically by considering higher orders in the extended many-body perturbation theory while maintaining a straightforward polynomial expansion.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Performance of wave function and Green's functions based methods for non equilibrium many-body dynamics [2.028938217928823]
Non equilibrium dynamics of quantum many-body systems are studied in terms of strong driving and weak driving fields.
We show that the compressed formulation based on similarity transformed Hamiltonians is practically exact in weak fields and, hence, weakly or moderately correlated systems.
The dynamics predicted by Green's functions in the (widely popular) GW approximation are less accurate by improve significantly upon the mean-field results in the strongly driven regime.
arXiv Detail & Related papers (2024-05-14T17:59:29Z) - Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach [0.0]
We employ the recently-developed method dubbed the effective Hamiltonian theory to understand the dynamics of system-bath configurations.
Through a combination of mapping steps and truncation, the effective Hamiltonian theory offers both analytical insights into signatures of strong couplings.
We show that although the former overlooks non-Markovian features in the transient equilibration dynamics, it correctly captures non-perturbative bath-generated couplings.
arXiv Detail & Related papers (2024-03-06T00:47:38Z) - Hamiltonian truncation tensor networks for quantum field theories [42.2225785045544]
We introduce a tensor network method for the classical simulation of continuous quantum field theories.
The method is built on Hamiltonian truncation and tensor network techniques.
One of the key developments is the exact construction of matrix product state representations of global projectors.
arXiv Detail & Related papers (2023-12-19T19:00:02Z) - Algebraic-Dynamical Theory for Quantum Many-body Hamiltonians: A
Formalized Approach To Strongly Interacting Systems [0.0]
Dynamical perturbation methods are the most widely used approaches for quantum many-body systems.
We formulate an algebraic-dynamical theory (ADT) by combining the power of quantum algebras and dynamical methods.
Applying ADT to many-body systems on lattices, we find that the quantum entanglement is represented by the cumulant structure of expectation values of the many-body COBS.
arXiv Detail & Related papers (2022-02-24T13:07:30Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Non-perturbative analytical diagonalization of Hamiltonians with
application to coupling suppression and enhancement in cQED [0.0]
Deriving effective Hamiltonian models plays an essential role in quantum theory.
We present two symbolic methods for computing effective Hamiltonian models.
We study the ZZ and cross-resonance interactions of superconducting qubits systems.
arXiv Detail & Related papers (2021-11-30T19:01:44Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Quantum Embedding Theory for Strongly-correlated States in Materials [2.3398944692275476]
We present a derivation of a quantum embedding theory based on the definition of effective Hamiltonians.
The effect of the environment on a chosen active space is accounted for through screened Coulomb interactions evaluated using density functional theory.
We generalize the quantum embedding theory to active spaces composed of orbitals that are not eigenstates of Kohn-Sham Hamiltonians.
arXiv Detail & Related papers (2021-02-25T21:13:56Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.