Learning to Program Variational Quantum Circuits with Fast Weights
- URL: http://arxiv.org/abs/2402.17760v1
- Date: Tue, 27 Feb 2024 18:53:18 GMT
- Title: Learning to Program Variational Quantum Circuits with Fast Weights
- Authors: Samuel Yen-Chi Chen
- Abstract summary: This paper introduces the Quantum Fast Weight Programmers (QFWP) as a solution to the temporal or sequential learning challenge.
The proposed QFWP model achieves learning of temporal dependencies without necessitating the use of quantum recurrent neural networks.
Numerical simulations conducted in this study showcase the efficacy of the proposed QFWP model in both time-series prediction and RL tasks.
- Score: 3.6881738506505988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Machine Learning (QML) has surfaced as a pioneering framework
addressing sequential control tasks and time-series modeling. It has
demonstrated empirical quantum advantages notably within domains such as
Reinforcement Learning (RL) and time-series prediction. A significant
advancement lies in Quantum Recurrent Neural Networks (QRNNs), specifically
tailored for memory-intensive tasks encompassing partially observable
environments and non-linear time-series prediction. Nevertheless, QRNN-based
models encounter challenges, notably prolonged training duration stemming from
the necessity to compute quantum gradients using backpropagation-through-time
(BPTT). This predicament exacerbates when executing the complete model on
quantum devices, primarily due to the substantial demand for circuit evaluation
arising from the parameter-shift rule. This paper introduces the Quantum Fast
Weight Programmers (QFWP) as a solution to the temporal or sequential learning
challenge. The QFWP leverages a classical neural network (referred to as the
'slow programmer') functioning as a quantum programmer to swiftly modify the
parameters of a variational quantum circuit (termed the 'fast programmer').
Instead of completely overwriting the fast programmer at each time-step, the
slow programmer generates parameter changes or updates for the quantum circuit
parameters. This approach enables the fast programmer to incorporate past
observations or information. Notably, the proposed QFWP model achieves learning
of temporal dependencies without necessitating the use of quantum recurrent
neural networks. Numerical simulations conducted in this study showcase the
efficacy of the proposed QFWP model in both time-series prediction and RL
tasks. The model exhibits performance levels either comparable to or surpassing
those achieved by QLSTM-based models.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Efficient quantum recurrent reinforcement learning via quantum reservoir
computing [3.6881738506505988]
Quantum reinforcement learning (QRL) has emerged as a framework to solve sequential decision-making tasks.
This work presents a novel approach to address this challenge by constructing QRL agents utilizing QRNN-based quantum long short-term memory (QLSTM)
arXiv Detail & Related papers (2023-09-13T22:18:38Z) - A Quantum Optical Recurrent Neural Network for Online Processing of
Quantum Times Series [0.7087237546722617]
We show that a quantum optical recurrent neural network (QORNN) can enhance the transmission rate of quantum channels.
We also show that our model can counteract similar memory effects if they are unwanted.
We run a small-scale version of this last task on the photonic processor Borealis.
arXiv Detail & Related papers (2023-05-31T19:19:25Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
Existing VQC or QNN-based methods require significant computational resources to perform gradient-based optimization of quantum circuit parameters.
In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC)
Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series tasks.
arXiv Detail & Related papers (2022-11-04T17:30:46Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Long Short-Term Memory [3.675884635364471]
Long short-term memory (LSTM) is a recurrent neural network (RNN) for sequence and temporal dependency data modeling.
We propose a hybrid quantum-classical model of LSTM, which we dub QLSTM.
Our work paves the way toward implementing machine learning algorithms for sequence modeling on noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2020-09-03T16:41:09Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Recurrent Quantum Neural Networks [7.6146285961466]
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
arXiv Detail & Related papers (2020-06-25T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.