Programming Variational Quantum Circuits with Quantum-Train Agent
- URL: http://arxiv.org/abs/2412.01173v1
- Date: Mon, 02 Dec 2024 06:26:09 GMT
- Title: Programming Variational Quantum Circuits with Quantum-Train Agent
- Authors: Chen-Yu Liu, Samuel Yen-Chi Chen, Kuan-Cheng Chen, Wei-Jia Huang, Yen-Jui Chang,
- Abstract summary: The Quantum-Train Quantum Fast Weight Programmer (QT-QFWP) framework is proposed, which facilitates the efficient and scalable programming of variational quantum circuits (VQCs)<n>This approach offers a significant advantage over conventional hybrid quantum-classical models by optimizing both quantum and classical parameter management.<n> QT-QFWP outperforms related models in both efficiency and predictive accuracy, providing a pathway toward more practical and cost-effective quantum machine learning applications.
- Score: 3.360429911727189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, the Quantum-Train Quantum Fast Weight Programmer (QT-QFWP) framework is proposed, which facilitates the efficient and scalable programming of variational quantum circuits (VQCs) by leveraging quantum-driven parameter updates for the classical slow programmer that controls the fast programmer VQC model. This approach offers a significant advantage over conventional hybrid quantum-classical models by optimizing both quantum and classical parameter management. The framework has been benchmarked across several time-series prediction tasks, including Damped Simple Harmonic Motion (SHM), NARMA5, and Simulated Gravitational Waves (GW), demonstrating its ability to reduce parameters by roughly 70-90\% compared to Quantum Long Short-term Memory (QLSTM) and Quantum Fast Weight Programmer (QFWP) without compromising accuracy. The results show that QT-QFWP outperforms related models in both efficiency and predictive accuracy, providing a pathway toward more practical and cost-effective quantum machine learning applications. This innovation is particularly promising for near-term quantum systems, where limited qubit resources and gate fidelities pose significant constraints on model complexity. QT-QFWP enhances the feasibility of deploying VQCs in time-sensitive applications and broadens the scope of quantum computing in machine learning domains.
Related papers
- Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
We propose a diffusion-based algorithm leveraging the LayerDAG framework to generate new quantum circuits.
Our results demonstrate that the proposed model consistently generates 100% valid quantum circuit outputs.
arXiv Detail & Related papers (2025-04-29T14:10:10Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
We propose Quantum Adaptive Self-Attention (QASA), a novel hybrid architecture that enhances classical Transformer models with a quantum attention mechanism.
QASA replaces dot-product attention with a parameterized quantum circuit (PQC) that adaptively captures inter-token relationships in the quantum Hilbert space.
Experiments on synthetic time-series tasks demonstrate that QASA achieves faster convergence and superior generalization compared to both standard Transformers and reduced classical variants.
arXiv Detail & Related papers (2025-04-05T02:52:37Z) - Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
We present the Quantum Kernel-Based Long short-memory (QK-LSTM) network, which integrates quantum kernel methods into classical LSTM architectures.
QK-LSTM captures intricate nonlinear dependencies and temporal dynamics with fewer trainable parameters.
arXiv Detail & Related papers (2024-12-12T01:16:52Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Machine-Learning Insights on Entanglement-trainability Correlation of Parameterized Quantum Circuits [17.975555487972166]
Variational quantum algorithms (VQAs) have emerged as the leading strategy to obtain quantum advantage on the current noisy intermediate-scale devices.
Their entanglement-trainability correlation, as the major reason for the barren plateau (BP) phenomenon, poses a challenge to their applications.
In this Letter, we suggest a gate-to-tensor (GTT) encoding method for parameterized quantum circuits (PQCs)
Two long short-term memory networks (L-G networks) are trained to predict both entanglement and trainability.
arXiv Detail & Related papers (2024-06-04T06:28:05Z) - Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm [0.0]
Digital quantum computers promise exponential speedups in performing quantum time-evolution.
The task of extracting desired quantum properties at intermediate time steps remains a computational bottleneck.
We propose a hybrid simulator that enables classical computers to leverage FTQC devices and quantum time propagators to overcome this bottleneck.
arXiv Detail & Related papers (2024-05-17T04:17:27Z) - Learning to Program Variational Quantum Circuits with Fast Weights [3.6881738506505988]
This paper introduces the Quantum Fast Weight Programmers (QFWP) as a solution to the temporal or sequential learning challenge.
The proposed QFWP model achieves learning of temporal dependencies without necessitating the use of quantum recurrent neural networks.
Numerical simulations conducted in this study showcase the efficacy of the proposed QFWP model in both time-series prediction and RL tasks.
arXiv Detail & Related papers (2024-02-27T18:53:18Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.