論文の概要: Cause and Effect: Can Large Language Models Truly Understand Causality?
- arxiv url: http://arxiv.org/abs/2402.18139v1
- Date: Wed, 28 Feb 2024 08:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 15:57:16.524979
- Title: Cause and Effect: Can Large Language Models Truly Understand Causality?
- Title(参考訳): 原因と効果: 大きな言語モデルは真に因果性を理解できるか?
- Authors: Swagata Ashwani, Kshiteesh Hegde, Nishith Reddy Mannuru, Mayank
Jindal, Dushyant Singh Sengar, Krishna Chaitanya Rao Kathala, Dishant Banga,
Vinija Jain and Aman Chadha
- Abstract要約: 本研究では,CARE CA(Content Aware Reasoning Enhancement with Counterfactual Analysis)フレームワークという新しいアーキテクチャを提案する。
提案するフレームワークには,ConceptNetと反ファクト文を備えた明示的な因果検出モジュールと,大規模言語モデルによる暗黙的な因果検出が組み込まれている。
ConceptNetの知識は、因果的発見、因果的識別、反事実的推論といった複数の因果的推論タスクのパフォーマンスを向上させる。
- 参考スコア(独自算出の注目度): 1.2798386044751477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rise of Large Language Models(LLMs), it has become crucial to
understand their capabilities and limitations in deciphering and explaining the
complex web of causal relationships that language entails. Current methods use
either explicit or implicit causal reasoning, yet there is a strong need for a
unified approach combining both to tackle a wide array of causal relationships
more effectively. This research proposes a novel architecture called Context
Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to
enhance causal reasoning and explainability. The proposed framework
incorporates an explicit causal detection module with ConceptNet and
counterfactual statements, as well as implicit causal detection through LLMs.
Our framework goes one step further with a layer of counterfactual explanations
to accentuate LLMs understanding of causality. The knowledge from ConceptNet
enhances the performance of multiple causal reasoning tasks such as causal
discovery, causal identification and counterfactual reasoning. The
counterfactual sentences add explicit knowledge of the not caused by scenarios.
By combining these powerful modules, our model aims to provide a deeper
understanding of causal relationships, enabling enhanced interpretability.
Evaluation of benchmark datasets shows improved performance across all metrics,
such as accuracy, precision, recall, and F1 scores. We also introduce
CausalNet, a new dataset accompanied by our code, to facilitate further
research in this domain.
- Abstract(参考訳): LLM(Large Language Models)の台頭により、言語が持つ複雑な因果関係のウェブを解読し、説明する際に、その能力と限界を理解することが重要になった。
現在のメソッドでは明示的あるいは暗黙的因果推論が使用されているが、より効果的な因果関係の配列に取り組むために両方を結合した統一的なアプローチが必要である。
本研究は、因果推論と説明可能性を高めるために、CARE CA(Context Aware Reasoning Enhancement with Counterfactual Analysis)フレームワークと呼ばれる新しいアーキテクチャを提案する。
提案フレームワークは,ConceptNetと反ファクトステートメントを備えた明示的な因果検出モジュールと,LLMによる暗黙的な因果検出を備える。
我々の枠組みはさらに一歩前進し、LCMの因果性理解をアクセントする反ファクト的説明の層が生まれている。
conceptnetの知識は、因果発見、因果同定、反事実推論といった複数の因果推論タスクのパフォーマンスを高める。
反事実文はシナリオによって引き起こされる not の明示的な知識を与える。
これらの強力なモジュールを組み合わせることで,因果関係をより深く理解し,解釈可能性を高めることを目的としている。
ベンチマークデータセットの評価では、正確性、精度、リコール、F1スコアなど、すべてのメトリクスのパフォーマンスが改善されている。
また、コードを伴う新しいデータセットであるCausalNetを導入し、この領域におけるさらなる研究を促進する。
関連論文リスト
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Causal Reasoning in Large Language Models: A Knowledge Graph Approach [6.5344638992876085]
大規模言語モデル(LLM)は一般的に、意味的に類似した情報を取得するか、あるいはチェーン・オブ・シントのような構造化されたプロンプトを通して推論能力を向上させることでパフォーマンスを向上させる。
本稿では,因果関係を利用した知識グラフに基づくランダムウォーク推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:24:44Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2024-04-09T14:40:08Z) - Is Knowledge All Large Language Models Needed for Causal Reasoning? [11.476877330365664]
本稿では,大規模言語モデル(LLM)の因果推論について,人工知能の進化における解釈可能性と信頼性を高めるために検討する。
本稿では,do-operativesを利用した新たな因果帰属モデルを提案する。
論文 参考訳(メタデータ) (2023-12-30T04:51:46Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [60.244412212130264]
Causal-Consistency Chain-of-Thoughtは、基礎モデルの忠実さと因果性を強化するために、マルチエージェントコラボレーションを活用する。
我々のフレームワークは、広範囲かつ包括的な評価を通じて、最先端の手法よりも大きな優位性を示す。
論文 参考訳(メタデータ) (2023-08-23T04:59:21Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - The Magic of IF: Investigating Causal Reasoning Abilities in Large
Language Models of Code [74.3873029963285]
因果関係を特定する能力である因果推論は、人間の思考において重要である。
コードプロンプト付きコード-LLMは因果推論において著しく優れていることを示す。
論文 参考訳(メタデータ) (2023-05-30T17:02:58Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
因果推論は変数間の因果関係を捉えるプロセスである。
本論文では,事実記述から因果グラフを構築するための新たなグラフベース因果推論フレームワークを提案する。
GCIに含まれる因果知識を強力なニューラルネットワークに効果的に注入することで、パフォーマンスと解釈性が向上します。
論文 参考訳(メタデータ) (2021-04-19T16:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。