Enhancing Multi-Hop Fact Verification with Structured Knowledge-Augmented Large Language Models
- URL: http://arxiv.org/abs/2503.08495v1
- Date: Tue, 11 Mar 2025 14:47:24 GMT
- Title: Enhancing Multi-Hop Fact Verification with Structured Knowledge-Augmented Large Language Models
- Authors: Han Cao, Lingwei Wei, Wei Zhou, Songlin Hu,
- Abstract summary: We propose a novel Structured Knowledge-Augmented LLM-based Network (LLM-SKAN) for multi-hop fact verification.<n>Specifically, we utilize an LLM-driven Knowledge Extractor to capture fine-grained information, including entities and their complicated relations.<n>The experimental results on four common-used datasets demonstrate the effectiveness and superiority of our model.
- Score: 26.023148371263012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of social platforms exacerbates the dissemination of misinformation, which stimulates the research in fact verification. Recent studies tend to leverage semantic features to solve this problem as a single-hop task. However, the process of verifying a claim requires several pieces of evidence with complicated inner logic and relations to verify the given claim in real-world situations. Recent studies attempt to improve both understanding and reasoning abilities to enhance the performance, but they overlook the crucial relations between entities that benefit models to understand better and facilitate the prediction. To emphasize the significance of relations, we resort to Large Language Models (LLMs) considering their excellent understanding ability. Instead of other methods using LLMs as the predictor, we take them as relation extractors, for they do better in understanding rather than reasoning according to the experimental results. Thus, to solve the challenges above, we propose a novel Structured Knowledge-Augmented LLM-based Network (LLM-SKAN) for multi-hop fact verification. Specifically, we utilize an LLM-driven Knowledge Extractor to capture fine-grained information, including entities and their complicated relations. Besides, we leverage a Knowledge-Augmented Relation Graph Fusion module to interact with each node and learn better claim-evidence representations comprehensively. The experimental results on four common-used datasets demonstrate the effectiveness and superiority of our model.
Related papers
- Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study [0.9424565541639368]
We introduce a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain.
Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a knowledge graph.
Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning.
arXiv Detail & Related papers (2025-04-23T04:36:19Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.
We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - Navigating Semantic Relations: Challenges for Language Models in Abstract Common-Sense Reasoning [5.4141465747474475]
Large language models (LLMs) have achieved remarkable performance in generating human-like text and solving problems of moderate complexity.<n>We systematically evaluate abstract common-sense reasoning in LLMs using the ConceptNet knowledge graph.
arXiv Detail & Related papers (2025-02-19T20:20:24Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.
However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.
This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.
We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery [10.573861741540853]
KG Structure as Prompt is a novel approach for integrating structural information from a knowledge graph, such as common neighbor nodes and metapaths, into prompt-based learning.
Experimental results on three types of biomedical and open-domain datasets under few-shot settings demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-07-26T14:07:00Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
We propose knOwledge REasOning empowered Language Model (OREO-LM)
OREO-LM consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs.
We show significant performance gain, achieving state-of-art results in the Closed-Book setting.
arXiv Detail & Related papers (2022-11-15T18:26:26Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
We propose a novel knowledge-aware approach that equips pre-trained language models with a multi-hop relational reasoning module.
It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs.
It unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability.
arXiv Detail & Related papers (2020-05-01T23:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.