論文の概要: MambaMIR: An Arbitrary-Masked Mamba for Joint Medical Image
Reconstruction and Uncertainty Estimation
- arxiv url: http://arxiv.org/abs/2402.18451v1
- Date: Wed, 28 Feb 2024 16:24:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 14:14:28.860422
- Title: MambaMIR: An Arbitrary-Masked Mamba for Joint Medical Image
Reconstruction and Uncertainty Estimation
- Title(参考訳): MambaMIR: 関節画像再構成と不確かさ推定のための任意マスクマンバ
- Authors: Jiahao Huang, Liutao Yang, Fanwen Wang, Yinzhe Wu, Yang Nan, Angelica
I. Aviles-Rivero, Carola-Bibiane Sch\"onlieb, Daoqiang Zhang and Guang Yang
- Abstract要約: 本研究では,マンバをベースとした医用画像再構成モデルであるMambaMIRと,そのジェネレーティブ・アドバーサリアル・ネットワーク・モデルであるMambaMIR-GANを紹介する。
提案したMambaMIRは,線形複雑性,大域受容場,動的重み付けなどの利点を元のMambaモデルから継承する。
高速MRIやSVCTなどの様々な医用画像再構成タスクで行った実験により,MambaMIRとMambaMIR-GANは,最先端の手法と比較して,同等あるいは優れた再建結果が得られることが示された。
- 参考スコア(独自算出の注目度): 14.994432215182346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent Mamba model has shown remarkable adaptability for visual
representation learning, including in medical imaging tasks. This study
introduces MambaMIR, a Mamba-based model for medical image reconstruction, as
well as its Generative Adversarial Network-based variant, MambaMIR-GAN. Our
proposed MambaMIR inherits several advantages, such as linear complexity,
global receptive fields, and dynamic weights, from the original Mamba model.
The innovated arbitrary-mask mechanism effectively adapt Mamba to our image
reconstruction task, providing randomness for subsequent Monte Carlo-based
uncertainty estimation. Experiments conducted on various medical image
reconstruction tasks, including fast MRI and SVCT, which cover anatomical
regions such as the knee, chest, and abdomen, have demonstrated that MambaMIR
and MambaMIR-GAN achieve comparable or superior reconstruction results relative
to state-of-the-art methods. Additionally, the estimated uncertainty maps offer
further insights into the reliability of the reconstruction quality. The code
is publicly available at https://github.com/ayanglab/MambaMIR.
- Abstract(参考訳): 最近のMambaモデルは、医用画像タスクを含む視覚表現学習に顕著な適応性を示している。
本研究では,マンバをベースとした医用画像再構成モデルであるMambaMIRと,そのGenerative Adversarial Network-based variantであるMambaMIR-GANを紹介する。
提案したMambaMIRは,線形複雑性,大域受容場,動的重み付けなどの利点を元のMambaモデルから継承する。
革新的任意マスク機構は,マンバを画像再構成作業に効果的に適用し,その後のモンテカルロによる不確実性推定にランダム性を与える。
膝, 胸, 腹部などの解剖学的領域をカバーする高速MRI, SVCT などの医療画像再構成作業において, MambaMIR と MambaMIR-GAN が, 最先端の方法と比較して, 同等あるいは優れた再建成績を示した。
さらに、推定不確実性マップは、復元品質の信頼性に関するさらなる洞察を提供する。
コードはhttps://github.com/ayanglab/MambaMIR.comで公開されている。
関連論文リスト
- KAN-Mamba FusionNet: Redefining Medical Image Segmentation with Non-Linear Modeling [3.2971993272923443]
本研究では,KAN(Kolmogorov-Arnold Networks)とMamba層を組み合わせた医用画像分割手法を提案する。
提案する Kan-Mamba FusionNet フレームワークは,コンボリューショナル並列トレーニングと自動回帰展開に注目駆動機構を統合することにより,画像セグメンテーションを改善する。
論文 参考訳(メタデータ) (2024-11-18T09:19:16Z) - A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond [2.838321145442743]
Mambaは、医用画像分析におけるテンプレートベースのディープラーニングアプローチに代わるものだ。
線形時間の複雑さがあり、トランスよりも大幅に改善されている。
Mambaは、注意機構のない長いシーケンスを処理し、高速な推論を可能にし、メモリを少なくする。
論文 参考訳(メタデータ) (2024-10-03T10:23:03Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba [77.21394300708172]
ディープニューラルネットワークアーキテクチャであるTransformerは、長年、自然言語処理などの分野を支配してきた。
マンバの最近の導入は、その優位性に挑戦し、研究者の間でかなりの関心を喚起し、マンバをベースとした一連のモデルが顕著な可能性を示している。
本研究は,総合的な議論をまとめ,本質的な研究の側面に潜り込み,(1)構造的状態空間モデルの原理に基づくマンバ機構の機能とその基盤,(2)提案されたマンバの様々なネットワークへの統合,(3)トランスフォーマーの代替としての可能性を探る。
論文 参考訳(メタデータ) (2024-06-24T15:27:21Z) - Soft Masked Mamba Diffusion Model for CT to MRI Conversion [7.973480052235655]
磁気共鳴イメージング (MRI) とCT (CT) は, 医用画像の分野で主に用いられている。
本研究では,一般的に使用されているU-NetあるいはTransformerのバックボーンを,潜時パッチで動作するMambaと呼ばれる状態空間モデル(SSM)に置き換え,CTからMRIへの遅延拡散モデルを訓練することを目的とする。
論文 参考訳(メタデータ) (2024-06-22T18:06:50Z) - Enhancing Global Sensitivity and Uncertainty Quantification in Medical Image Reconstruction with Monte Carlo Arbitrary-Masked Mamba [22.852768590511058]
本稿では,共同医用画像再構成と不確実性推定のためのウェーブレット分解を用いたArbitrary-Masked MambaベースのモデルであるMambaMIRを紹介する。
新しいArbitrary Scan Masking (ASM) 機構は冗長な情報を「マスクアウト」し、さらなる不確実性推定のためにランダム性を導入する。
テクスチャのさらなる保存と知覚品質の向上のために,我々はMambaMIRへのウェーブレット変換を採用し,その変形を生成的逆数ネットワーク(MambaMIR-GAN)に基づいて探索する。
論文 参考訳(メタデータ) (2024-05-27T21:04:43Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamberは、マルチモーダルなMamba TwisterブロックとMambaのパワーを統合する新しいRISアーキテクチャである。
Mamba Twisterは画像とテキストのインタラクションを明示的にモデル化し、独自のチャネルと空間的ツイスト機構を通じてテキストと視覚的特徴を融合する。
論文 参考訳(メタデータ) (2024-03-26T16:27:37Z) - MedMamba: Vision Mamba for Medical Image Classification [0.0]
視覚変換器(ViT)と畳み込みニューラルネットワーク(CNN)は医療画像分類タスクで広く研究され、広く利用されている。
近年の研究では、マンバで表される状態空間モデル(SSM)が、長距離依存を効果的にモデル化できることが示されている。
我々は、医用画像の一般的な分類のための最初のビジョンマンバであるメドマンバを提案する。
論文 参考訳(メタデータ) (2024-03-06T16:49:33Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。