論文の概要: KAN-Mamba FusionNet: Redefining Medical Image Segmentation with Non-Linear Modeling
- arxiv url: http://arxiv.org/abs/2411.11926v1
- Date: Mon, 18 Nov 2024 09:19:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:36:50.265403
- Title: KAN-Mamba FusionNet: Redefining Medical Image Segmentation with Non-Linear Modeling
- Title(参考訳): Kan-Mamba FusionNet: 非線形モデリングによる医用画像分割の再定義
- Authors: Akansh Agrawal, Akshan Agrawal, Shashwat Gupta, Priyanka Bagade,
- Abstract要約: 本研究では,KAN(Kolmogorov-Arnold Networks)とMamba層を組み合わせた医用画像分割手法を提案する。
提案する Kan-Mamba FusionNet フレームワークは,コンボリューショナル並列トレーニングと自動回帰展開に注目駆動機構を統合することにより,画像セグメンテーションを改善する。
- 参考スコア(独自算出の注目度): 3.2971993272923443
- License:
- Abstract: Medical image segmentation is crucial in robotic surgeries, disease diagnosis, and treatment plans. This research presents an innovative methodology that combines Kolmogorov-Arnold Networks (KAN) with an adapted Mamba layer for medical image segmentation. The proposed KAN-Mamba FusionNet framework improves image segmentation by integrating attention-driven mechanisms with convolutional parallel training and autoregressive deployment, while preserving interpretability, in contrast to the state-of-the-art techniques that depend exclusively on Mamba for ailment localization and accurate diagnosis. We evaluated our proposed KAN-Mamba FusionNet model on three distinct medical image segmentation datasets, BUSI, Kvasir-Seg and GlaS. The results indicated that the KAN-Mamba FusionNet consistently yields better IoU and F1 scores in comparison to the state-of-the-art methods. Further, we offer insights into the model's behavior via ablation studies, examining the effects of various components and assessing their contributions to the overall performance of the proposed model. The findings illustrate the strength and effectiveness of this methodology for dependable medical image segmentation, providing a unique approach to address intricate visual data issues in healthcare.
- Abstract(参考訳): 医用画像のセグメンテーションは、ロボット手術、疾患診断、治療計画において重要である。
本研究では,KAN(Kolmogorov-Arnold Networks)とMamba層を組み合わせた医用画像分割手法を提案する。
提案するkan-Mamba FusionNetフレームワークは,コンボリューショナル並列トレーニングと自己回帰展開とを併用して画像セグメンテーションを改善する。
提案したkan-Mamba FusionNetモデルについて,BUSI,Kvasir-Seg,GlaSの3つの異なる医用画像セグメンテーションデータセットを用いて評価した。
その結果,kan-Mamba FusionNetは最先端の手法と比較して一貫してIoUとF1のスコアが向上していることがわかった。
さらに、アブレーション研究を通じてモデルの挙動を把握し、様々な要素の影響を調べ、提案モデル全体の性能に対する寄与を評価する。
この知見は、医療における複雑な視覚データ問題に対処するためのユニークなアプローチを提供する、信頼性の高い医用画像セグメンテーションのためのこの方法論の強みと有効性を示している。
関連論文リスト
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - HC-Mamba: Vision MAMBA with Hybrid Convolutional Techniques for Medical Image Segmentation [5.318153305245246]
本稿では,現代空間モデルMambaに基づく新しい医用画像分割モデルHC-Mambaを提案する。
HC-Mambaモデルに拡張畳み込み手法を導入し,より広い範囲の文脈情報を取得する。
さらに、HC-Mambaモデルでは、深度的に分離可能な畳み込みを採用し、パラメータの数とモデルの計算能力を大幅に削減する。
論文 参考訳(メタデータ) (2024-05-08T12:24:50Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
我々は,MAMBAフレームワークにステートスペースモデル(SSM)とアドバンスト階層ネットワーク(AHNet)を統合したMamba-Ahnetを紹介する。
Mamba-Ahnetは、SSMの特徴抽出と理解をAHNetの注意機構と画像再構成と組み合わせ、セグメンテーションの精度と堅牢性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-26T08:15:43Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Swin Deformable Attention Hybrid U-Net for Medical Image Segmentation [3.407509559779547]
そこで本研究では,Swin(Shifted Window)デフォルマブル・アテンションをハイブリッドアーキテクチャに組み込んでセグメンテーション性能を向上させることを提案する。
提案するSwing Deformable Attention Hybrid UNet (SDAH-UNet) は解剖学的および病変分割作業における最先端の性能を示す。
論文 参考訳(メタデータ) (2023-02-28T09:54:53Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。