論文の概要: Structural Resilience and Connectivity of the IPv6 Internet: An AS-level Topology Examination
- arxiv url: http://arxiv.org/abs/2403.00193v1
- Date: Thu, 29 Feb 2024 23:45:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:39:33.703278
- Title: Structural Resilience and Connectivity of the IPv6 Internet: An AS-level Topology Examination
- Title(参考訳): IPv6インターネットの構造抵抗性と接続性:ASレベルトポロジーによる検討
- Authors: Bin Yuan, Tianbo Song,
- Abstract要約: データセットには17,232のASと10,000のIPv6プレフィックスが含まれている。
解析の結果,平均経路長約3ホップの相互接続ネットワークが明らかになった。
特にIPv6の採用が増加するにつれて、ネットワーク設計と戦略的計画にとって発見は不可欠である。
- 参考スコア(独自算出の注目度): 2.1331883629523634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study utilizes a comprehensive dataset informed by IPv6 routing information to provide statistics, degree distribution, joint degree distribution, and clustering analysis of the IPv6 Internet's structure and resilience.The dataset includes 17,232 unique ASes and 10,000 unique IPv6 prefixes. Analysis reveals an interconnected network with an average path length of approximately 3 hops, suggesting a robust and efficient network with potential redundancy and resilience, despite some isolated components. The paper outlines the degree distribution, indicating many peripheral nodes in a sparse network, and a clustering analysis showing a tendency for ASes to form clusters, which is indicative of redundancy and robustness against failures. The connectivity analysis, including path redundancy and reachability, supports the network's resilience.The findings are crucial for network design and strategic planning, particularly as IPv6 adoption increases. The paper emphasizes the importance of continuous monitoring and improvement of network connectivity in the evolving Internet landscape, highlighting the IPv6 Internet's resilience and structured connectivity.
- Abstract(参考訳): この研究は、IPv6ルーティング情報から得られる包括的なデータセットを使用して、IPv6インターネットの構造とレジリエンスの統計、次数分布、合同度分布、クラスタリング分析を提供し、データセットには17,232個のASと10,000個の独自のIPv6プレフィックスが含まれている。
解析により平均パス長約3ホップの相互接続ネットワークが明らかとなり、いくつかの孤立したコンポーネントにもかかわらず、潜在的な冗長性とレジリエンスを備えた堅牢で効率的なネットワークが示唆された。
本稿では、スパースネットワーク内の多数の周辺ノードの次数分布と、ASesがクラスタを形成する傾向を示すクラスタリング分析を概説し、障害に対する冗長性とロバスト性を示す。
経路冗長性と到達性を含む接続解析は、ネットワークのレジリエンスをサポートし、特にIPv6の採用が増加するにつれて、ネットワーク設計と戦略的計画に不可欠である。
本稿では,IPv6インターネットのレジリエンスと構造的接続性を強調し,ネットワーク接続の継続的な監視と改善の重要性を強調した。
関連論文リスト
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
本稿では,ネットワークトポロジとダイナミックスの生成的データ拡張を通じてこの問題に対処するために設計された,複雑なネットワークに対する新しいレジリエンス予測フレームワークを提案する。
3つのネットワークデータセットの実験結果から,提案するフレームワークであるTDNetGenは,最大85%~95%の精度で高い予測精度を達成可能であることが示された。
論文 参考訳(メタデータ) (2024-08-19T09:20:31Z) - FLEE-GNN: A Federated Learning System for Edge-Enhanced Graph Neural
Network in Analyzing Geospatial Resilience of Multicommodity Food Flows [31.70913467854211]
FLEE-GNNはエッジ強化グラフニューラルネットワークのための新しいフェデレーション学習システムである。
これは、グラフニューラルネットワークの堅牢性と適応性と、フェデレーション学習のプライバシ意識と分散化の側面を組み合わせる。
その結果, 多商品食品流網のレジリエンスを定量化する手法の進歩が示唆された。
論文 参考訳(メタデータ) (2023-10-20T03:06:41Z) - A Bayesian Approach to Reconstructing Interdependent Infrastructure
Networks from Cascading Failures [2.9364290037516496]
ネットワーク相互依存を理解することは、カスケード障害を予測し、破壊を計画するために不可欠である。
個々のネットワークのトポロジに関するデータは、プライバシやセキュリティ上の懸念から、一般には利用できないことが多い。
本稿では,相互依存型インフラストラクチャネットワークのトポロジを再構築するスケーラブルな非パラメトリックベイズ手法を提案する。
論文 参考訳(メタデータ) (2022-11-28T17:45:41Z) - Service Discovery in Social Internet of Things using Graph Neural
Networks [1.552282932199974]
IoT(Internet-of-Things)ネットワークは、何千もの物理的エンティティをインテリジェントに接続して、コミュニティにさまざまなサービスを提供する。
ネットワークに存在するIoTデバイスを発見し、それに対応するサービスを要求するプロセスを複雑にしている。
異種大規模IoTネットワークに適したスケーラブルなリソース割り当てニューラルモデルを提案する。
論文 参考訳(メタデータ) (2022-05-25T12:25:37Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - On Topology Optimization and Routing in Integrated Access and Backhaul
Networks: A Genetic Algorithm-based Approach [70.85399600288737]
IABネットワークにおけるトポロジ最適化とルーティングの問題について検討する。
我々は、IABノード配置と非IABバックホールリンク分布の両方に効率的な遺伝的アルゴリズムベースのスキームを開発する。
メッシュベースのIABネットワークを実現する上での課題について論じる。
論文 参考訳(メタデータ) (2021-02-14T21:52:05Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - NEW: A Generic Learning Model for Tie Strength Prediction in Networks [5.834475036139535]
タイの強度予測(タイの強さ予測、英: Tie strength prediction)は、ネットワークに出現する接続パターンの多様性を探索する上で不可欠である。
我々はNEW(Neighborhood Estimating Weight)と呼ばれる新しい計算フレームワークを提案する。
NEWはネットワークの基本構造情報によって純粋に駆動され、多様な種類のネットワークに適応する柔軟性を持つ。
論文 参考訳(メタデータ) (2020-01-15T13:02:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。