論文の概要: Active Deep Kernel Learning of Molecular Properties: Realizing Dynamic Structural Embeddings
- arxiv url: http://arxiv.org/abs/2403.01234v2
- Date: Wed, 16 Jul 2025 15:38:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:10.962384
- Title: Active Deep Kernel Learning of Molecular Properties: Realizing Dynamic Structural Embeddings
- Title(参考訳): 分子特性のアクティブディープカーネル学習:動的構造埋め込みの実現
- Authors: Ayana Ghosh, Maxim Ziatdinov, Sergei V. Kalinin,
- Abstract要約: 本稿では,Deep Kernel Learning (DKL) を用いた分子探索のための能動的学習手法を提案する。
DKLは構造的な埋め込みを直接プロパティにリンクし、関連するプロパティ情報を優先順位付けする組織化された潜在空間を作成する。
埋め込みベクターを標的特性に合わせて反復的に再計算することにより、DKLは重要な分子特性を表す集中した最大値を発見し、イノベーションの可能性を秘めた未探索領域を明らかにする。
- 参考スコア(独自算出の注目度): 0.26716003713321473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As vast databases of chemical identities become increasingly available, the challenge shifts to how we effectively explore and leverage these resources to study molecular properties. This paper presents an active learning approach for molecular discovery using Deep Kernel Learning (DKL), demonstrated on the QM9 dataset. DKL links structural embeddings directly to properties, creating organized latent spaces that prioritize relevant property information. By iteratively recalculating embedding vectors in alignment with target properties, DKL uncovers concentrated maxima representing key molecular properties and reveals unexplored regions with potential for innovation. This approach underscores DKL's potential in advancing molecular research and discovery.
- Abstract(参考訳): 化学アイデンティティの膨大なデータベースが利用可能になるにつれて、これらの資源を効果的に探索し、活用して分子特性を研究する方法にシフトする。
本稿では,Deep Kernel Learning (DKL) を用いた分子探索のための能動的学習手法を提案する。
DKLは構造的な埋め込みを直接プロパティにリンクし、関連するプロパティ情報を優先順位付けする組織化された潜在空間を作成する。
埋め込みベクターを標的特性に合わせて反復的に再計算することにより、DKLは重要な分子特性を表す集中した最大値を発見し、イノベーションの可能性を秘めた未探索領域を明らかにする。
このアプローチは、分子研究と発見の進展におけるDKLの可能性を強調している。
関連論文リスト
- Aligned Manifold Property and Topology Point Clouds for Learning Molecular Properties [55.2480439325792]
この研究は、局所量子由来のスカラー場とカスタムトポロジカルディスクリプタを組み合わせた分子表面表現であるAMPTCRを導入する。
分子量については、AMPTCRが物理的に意味のあるデータをコードし、検証R2は0.87であることを確認した。
細菌抑制タスクでは、AMPTCRは大腸菌阻害値の分類と直接回帰の両方を可能にする。
論文 参考訳(メタデータ) (2025-07-22T04:35:50Z) - Learning Hierarchical Interaction for Accurate Molecular Property Prediction [8.488251667425887]
本稿では,新しいモデルであるHimNetの基礎となる階層的インタラクションメッセージパッシング機構を提案する。
本手法は,原子,モチーフ,分子レベルでの対話型表現学習を階層的注意誘導メッセージパッシングによって実現する。
本手法は, 分子の化学的直観とよく一致し, 有望な階層的解釈性を示す。
論文 参考訳(メタデータ) (2025-04-28T15:19:28Z) - Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
分子グラフを不均一な分子グラフ学習(KCHML)に符号化するパラダイムシフトを提案する。
KCHMLは、不均一な分子グラフと二重メッセージパッシング機構によって強化された3つの異なるグラフビュー-分子、元素、薬理学-を通して分子を概念化する。
この設計は、プロパティ予測やドラッグ・ドラッグ・インタラクション(DDI)予測などの下流タスクに対する包括的な表現を提供する。
論文 参考訳(メタデータ) (2025-02-17T11:53:58Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
そこで本研究では,戦略的サンプリングを通じて原因・影響関係を識別する能動的学習手法を提案する。
この方法は、より大きな化学空間の最も多くの情報を符号化できるデータセットの最小サブセットを特定する。
その後、同定された因果関係を利用して体系的な介入を行い、モデルがこれまで遭遇していなかった化学空間における設計タスクを最適化する。
論文 参考訳(メタデータ) (2024-04-05T17:15:48Z) - Mol-AIR: Molecular Reinforcement Learning with Adaptive Intrinsic Rewards for Goal-directed Molecular Generation [0.0]
Mol-AIRは、ゴール指向分子生成のための適応型固有報酬を用いた強化学習ベースのフレームワークである。
ベンチマークテストでは、Moll-AIRは所望の特性を持つ分子を生成する既存のアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-29T10:44:51Z) - TwinBooster: Synergising Large Language Models with Barlow Twins and
Gradient Boosting for Enhanced Molecular Property Prediction [0.0]
本研究では, 微調整された大規模言語モデルを用いて, テキスト情報に基づく生物学的アッセイを統合する。
このアーキテクチャは、測定情報と分子指紋の両方を使用して、真の分子情報を抽出する。
TwinBoosterは最先端のゼロショット学習タスクを提供することで、目に見えないバイオアッセイや分子の性質の予測を可能にする。
論文 参考訳(メタデータ) (2024-01-09T10:36:20Z) - From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning [10.025809630976065]
本稿では,より堅牢で一般化可能な化学知識を学習する,新しい事前学習フレームワークを提案する。
提案手法は,種々の分子特性ベンチマークにおける競合性能を示す。
論文 参考訳(メタデータ) (2023-11-05T23:47:52Z) - Unsupervised Learning of Molecular Embeddings for Enhanced Clustering
and Emergent Properties for Chemical Compounds [2.6803933204362336]
SMILESデータに基づく化合物の検出とクラスタリングのための様々な手法を提案する。
埋め込みデータを用いて化合物のグラフィカルな構造を解析し, しきい値を満たすためにベクトル探索を用いる。
また、GPT3.5を用いたベクトルデータベースに格納された自然言語記述埋め込みを用い、ベースモデルより優れていた。
論文 参考訳(メタデータ) (2023-10-25T18:00:24Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Deep Kernel Methods Learn Better: From Cards to Process Optimization [0.7587345054583298]
能動学習によるDKLはよりコンパクトでスムーズな潜在空間が得られることを示す。
簡単なカードデータセットを用いてこの挙動を実証し、物理系におけるドメイン生成軌道の最適化に拡張する。
論文 参考訳(メタデータ) (2023-03-25T20:21:29Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Discovery of structure-property relations for molecules via
hypothesis-driven active learning over the chemical space [0.0]
本稿では,仮説学習に基づく化学空間上の能動的学習のための新しいアプローチを提案する。
我々は,データサブセットの小さな部分集合に基づいて,関心の構造と機能の関係性に関する仮説を構築した。
このアプローチでは、SISSOやアクティブラーニングといったシンボリックレグレッションメソッドの要素をひとつのフレームワークに統合する。
論文 参考訳(メタデータ) (2023-01-06T14:22:43Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Generative Enriched Sequential Learning (ESL) Approach for Molecular
Design via Augmented Domain Knowledge [1.4410716345002657]
生成機械学習技術は、分子指紋表現に基づく新しい化学構造を生成することができる。
教師付きドメイン知識の欠如は、学習手順がトレーニングデータに見られる一般的な分子に相対的に偏っていることを誤解させる可能性がある。
この欠点は、例えば薬物類似度スコア(QED)の定量的推定など、ドメイン知識でトレーニングデータを増強することで軽減した。
論文 参考訳(メタデータ) (2022-04-05T20:16:11Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。