論文の概要: Mol-AIR: Molecular Reinforcement Learning with Adaptive Intrinsic Rewards for Goal-directed Molecular Generation
- arxiv url: http://arxiv.org/abs/2403.20109v1
- Date: Fri, 29 Mar 2024 10:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:54:04.666624
- Title: Mol-AIR: Molecular Reinforcement Learning with Adaptive Intrinsic Rewards for Goal-directed Molecular Generation
- Title(参考訳): Mol-AIR: ゴール指向分子生成のための適応型内因性逆流を用いた分子強化学習
- Authors: Jinyeong Park, Jaegyoon Ahn, Jonghwan Choi, Jibum Kim,
- Abstract要約: Mol-AIRは、ゴール指向分子生成のための適応型固有報酬を用いた強化学習ベースのフレームワークである。
ベンチマークテストでは、Moll-AIRは所望の特性を持つ分子を生成する既存のアプローチよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing techniques for discovering molecular structures with desired properties is crucial in artificial intelligence(AI)-based drug discovery. Combining deep generative models with reinforcement learning has emerged as an effective strategy for generating molecules with specific properties. Despite its potential, this approach is ineffective in exploring the vast chemical space and optimizing particular chemical properties. To overcome these limitations, we present Mol-AIR, a reinforcement learning-based framework using adaptive intrinsic rewards for effective goal-directed molecular generation. Mol-AIR leverages the strengths of both history-based and learning-based intrinsic rewards by exploiting random distillation network and counting-based strategies. In benchmark tests, Mol-AIR demonstrates superior performance over existing approaches in generating molecules with desired properties without any prior knowledge, including penalized LogP, QED, and celecoxib similarity. We believe that Mol-AIR represents a significant advancement in drug discovery, offering a more efficient path to discovering novel therapeutics.
- Abstract(参考訳): 望ましい性質を持つ分子構造を発見するための最適化技術は、人工知能(AI)に基づく薬物発見において不可欠である。
深層生成モデルと強化学習を組み合わせることは、特定の性質を持つ分子を生成するための効果的な戦略として現れている。
その可能性にもかかわらず、このアプローチは広大な化学空間を探索し、特定の化学的特性を最適化するのに効果がない。
これらの制約を克服するために,適応型固有報酬を用いた強化学習ベースのフレームワークであるMoll-AIRを提案する。
Mol-AIRは、ランダム蒸留ネットワークとカウントベースの戦略を活用することで、履歴ベースと学習ベースの本質的な報酬の両方の長所を活用する。
ベンチマークテストでは、Mol-AIRは、ペナル化LogP、QED、セロコキシブ類似性など、事前の知識を持たない所望の特性を持つ分子を生成する既存のアプローチよりも優れた性能を示す。
モル-AIRは薬物発見の著しい進歩であり、新しい治療法を発見するためのより効率的な道のりを提供すると我々は信じている。
関連論文リスト
- Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - Improving Targeted Molecule Generation through Language Model Fine-Tuning Via Reinforcement Learning [0.0]
我々は,特定のタンパク質を標的とした薬物を設計する言語モデルの能力を活用する,革新的なデノボドラッグデザイン戦略を導入する。
本手法は, 薬物-標的相互作用と分子的妥当性を考慮した複合報酬関数を統合する。
論文 参考訳(メタデータ) (2024-05-10T22:19:12Z) - ChemSpaceAL: An Efficient Active Learning Methodology Applied to
Protein-Specific Molecular Generation [0.0]
本稿では,生成したデータのサブセットのみを評価することを必要とする,計算効率のよい能動的学習手法を提案する。
FDAが承認した小分子インヒビターc-Ablキナーゼを用いたタンパク質に対するGPT分子ジェネレータの微調整による標的分子生成への本手法の適用性を実証した。
興味深いことに、このモデルは、その存在を事前に知ることなく、インヒビターに似た分子を生成することを学び、それらのうち2つを正確に再現する。
論文 参考訳(メタデータ) (2023-09-11T22:28:36Z) - Beyond Chemical Language: A Multimodal Approach to Enhance Molecular
Property Prediction [2.1202329976106924]
本稿では,化学言語表現と物理化学的特徴を組み合わせた分子特性予測のための新しい多モーダル言語モデルを提案する。
提案手法であるMultiMODAL-MOLFORMERは,特定の標的特性に対する直接因果効果に基づいて物理化学的特徴を同定する因果多段階特徴選択法を用いている。
ケミカル言語ベースのMOLFORMERやグラフニューラルネットワークなど,既存の最先端アルゴリズムと比較して,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-22T13:28:59Z) - MolCAP: Molecular Chemical reActivity pretraining and
prompted-finetuning enhanced molecular representation learning [3.179128580341411]
MolCAPは、化学反応性(IMR)知識に基づくグラフ事前学習トランスフォーマーであり、微調整を誘導する。
MolCAPによって推進され、基礎的なグラフニューラルネットワークでさえ、以前のモデルを上回る驚くべきパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2023-06-13T13:48:06Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
本稿では,分子潜在表現ベクトルを最適化した遅延空間におけるコスト効率のよい進化戦略を提案する。
我々は、潜伏空間と観測空間をマッピングするために、事前訓練された分子生成モデルを採用する。
提案手法といくつかの高度な手法を比較した複数の最適化タスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-11-30T11:02:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
分子最適化のためのグラフ畳み込みポリシネットワークであるMNCE-RLを提案する。
我々は、元の近傍制御された埋め込み文法を拡張して、分子グラフ生成に適用する。
提案手法は, 分子最適化タスクの多種多様さにおいて, 最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-14T05:42:15Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。