論文の概要: MovieLLM: Enhancing Long Video Understanding with AI-Generated Movies
- arxiv url: http://arxiv.org/abs/2403.01422v1
- Date: Sun, 3 Mar 2024 07:43:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 21:38:47.769507
- Title: MovieLLM: Enhancing Long Video Understanding with AI-Generated Movies
- Title(参考訳): moviellm:ai映画によるロングビデオ理解の強化
- Authors: Zhende Song, Chenchen Wang, Jiamu Sheng, Chi Zhang, Gang Yu, Jiayuan
Fan, Tao Chen
- Abstract要約: MovieLLMは、長いビデオのための合成で高品質なデータを作成するために設計された新しいフレームワークである。
実験により,MovieLLMが生成したデータにより,マルチモーダルモデルの性能が著しく向上することを確認した。
- 参考スコア(独自算出の注目度): 22.566689536807043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of multimodal models has marked a significant step forward in
how machines understand videos. These models have shown promise in analyzing
short video clips. However, when it comes to longer formats like movies, they
often fall short. The main hurdles are the lack of high-quality, diverse video
data and the intensive work required to collect or annotate such data. In the
face of these challenges, we propose MovieLLM, a novel framework designed to
create synthetic, high-quality data for long videos. This framework leverages
the power of GPT-4 and text-to-image models to generate detailed scripts and
corresponding visuals. Our approach stands out for its flexibility and
scalability, making it a superior alternative to traditional data collection
methods. Our extensive experiments validate that the data produced by MovieLLM
significantly improves the performance of multimodal models in understanding
complex video narratives, overcoming the limitations of existing datasets
regarding scarcity and bias.
- Abstract(参考訳): マルチモーダルモデルの開発は、マシンがビデオを理解する方法において大きな一歩を踏み出した。
これらのモデルは短いビデオクリップの分析に有望である。
しかし、映画のような長いフォーマットの場合、それらはしばしば不足する。
主なハードルは、高品質で多様なビデオデータの欠如と、そのようなデータの収集や注釈付けに必要な集中的な作業である。
これらの課題に直面して、長編ビデオのための合成高品質なデータを作成するための新しいフレームワーク、MovieLLMを提案する。
このフレームワークはGPT-4とテキスト・ツー・イメージ・モデルのパワーを活用して詳細なスクリプトと対応するビジュアルを生成する。
私たちのアプローチは柔軟性とスケーラビリティに際し、従来のデータ収集メソッドよりも優れた選択肢となります。
以上の結果から,MovieLLMが生成したデータにより,複雑な映像の物語を理解する上でのマルチモーダルモデルの性能が著しく向上することが確認された。
関連論文リスト
- VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
空間的詳細と時間的コヒーレンスを保持するビデオQAペアを特徴とする,新しいデータセットであるVideoEspressoを紹介する。
GPT-4o を用いた QA ペア生成にあたり, 冗長性を抑えるためにセマンティック・アウェア法を用いて構成パイプラインを構築した。
フレームセレクタと2段階の命令微調整推論LVLMを備えたハイブリッドLVLM協調フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-22T08:33:36Z) - Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning [71.94122309290537]
ビデオの高密度キャプションを生成するための,効率的なオンライン手法を提案する。
我々のモデルは、新しい自己回帰因子化復号化アーキテクチャを使用している。
提案手法は,オフライン手法とオンライン手法の両方と比較して優れた性能を示し,計算コストを20%削減する。
論文 参考訳(メタデータ) (2024-11-22T02:46:44Z) - Interpolating Video-LLMs: Toward Longer-sequence LMMs in a Training-free Manner [53.671484175063995]
ビデオ-LLMはショートビデオの処理のために事前訓練されており、長いビデオコンテンツを理解するための幅広いアプリケーションを制限する。
固定ビデオエンコーダとアライメントプロジェクタの制約を回避するための代替ビデオトークン再構成手法を提案する。
論文 参考訳(メタデータ) (2024-09-19T17:59:55Z) - xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1(xGen-SynVideo-1)は、テキスト記述からリアルなシーンを生成することができるテキスト・ツー・ビデオ(T2V)生成モデルである。
VidVAEはビデオデータを空間的にも時間的にも圧縮し、視覚トークンの長さを大幅に削減する。
DiTモデルは、空間的および時間的自己アテンション層を取り入れ、異なる時間枠とアスペクト比をまたいだ堅牢な一般化を可能にする。
論文 参考訳(メタデータ) (2024-08-22T17:55:22Z) - VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding [15.959757105308238]
ビデオLMMは、視覚入力を処理するために、画像エンコーダまたはビデオエンコーダに依存しており、それぞれに独自の制限がある。
本稿では,映像エンコーダと映像エンコーダの相補的利点(大域的時間文脈モデリング)を組み合わせたビデオGPT+を紹介する。
本稿では,VCGBench,MVBench,Zero-shotなど,複数のビデオベンチマークのパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-06-13T17:59:59Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking [33.75267864844047]
ビデオオブジェクト(VOS)は、より大きなデータセットとより複雑で現実的な設定が利用できるという、ますます重要な問題として現れています。
本稿では,上記の課題を体系的に分析し,対処することを目的とした,クリップ型DETR方式のエンコーダデコーダアーキテクチャを提案する。
具体的には、物体が大きな変形を受ける映像の一部に学習を集中させる新しい変換認識損失を提案する。
論文 参考訳(メタデータ) (2023-12-13T21:02:03Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
我々は,大規模な画像テキストモデルを浅部時間融合によりビデオに転送する共通パラダイムを構築した。
1)標準ビデオデータセットにおけるビデオ言語アライメントの低下による空間能力の低下と,(2)処理可能なフレーム数のボトルネックとなるメモリ消費の増大である。
論文 参考訳(メタデータ) (2023-12-12T16:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。