論文の概要: Quantum Computation by Cooling
- arxiv url: http://arxiv.org/abs/2403.01760v5
- Date: Wed, 12 Jun 2024 01:17:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 11:28:49.054550
- Title: Quantum Computation by Cooling
- Title(参考訳): 冷却による量子計算
- Authors: Jaeyoon Cho,
- Abstract要約: 本稿では,断熱進化に基づく量子計算のための特定のハミルトンモデルを提案する。
この冷却法に基づく量子計算は、その計算能力において量子回路に基づく計算と等価であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adiabatic quantum computation is a paradigmatic model aiming to solve a computational problem by finding the many-body ground state encapsulating the solution. However, its use of an adiabatic evolution depending on the spectral gap of an intricate many-body Hamiltonian makes its analysis daunting. While it is plausible to directly cool the final gapped system of the adiabatic evolution instead, the analysis of such a scheme on a general ground is missing. Here, we propose a specific Hamiltonian model for this purpose. The scheme is inspired by cavity cooling, involving the emulation of a zero-temperature reservoir. Repeated discarding of ancilla reservoir qubits extracts the entropy of the system, driving the system toward its ground state. At the same time, the measurement of the discarded qubits hints at the energy level structure of the system as a return. We show that quantum computation based on this cooling procedure is equivalent in its computational power to the one based on quantum circuits. We then exemplify the scheme with a few illustrative use cases for combinatorial optimization problems. In the first example, the cooling is free from any local energy minima, reducing the scheme to Grover's search algorithm with a few improvements. In the second example, the cooling suffers from abundant local energy minima. To circumvent this, we implant a mechanism in the Hamiltonian so that the population trapped in the local minima can tunnel out by high-order transitions. We support this idea with a numerical simulation for a particular combinatorial optimization problem. We also discuss its application to preparing quantum many-body ground states, arguing that the spectral gap is a crucial factor in determining the time scale of the cooling.
- Abstract(参考訳): 断熱量子計算は、解をカプセル化した多体基底状態を見つけることによって、計算問題を解くことを目的としたパラダイムモデルである。
しかし、複雑な多体ハミルトニアンのスペクトルギャップによる断熱的進化の利用は、その分析をばかげている。
代わりに、断熱進化の最終的なギャップを埋めた系を直接冷却することは可能であるが、一般の地上でのそのようなスキームの分析は欠落している。
ここでは、この目的のために特定のハミルトンモデルを提案する。
このスキームは空洞冷却にインスパイアされ、ゼロ温度貯水池のエミュレーションを含む。
アシラ貯水池の繰り返し廃棄はシステムのエントロピーを抽出し、システムをその基底状態に向かって駆動する。
同時に、廃棄された量子ビットの測定は、リターンとしてシステムのエネルギーレベル構造を示唆する。
この冷却法に基づく量子計算は、その計算能力において量子回路に基づく計算と等価であることを示す。
次に、組合せ最適化問題に対するいくつかの実例を用いて、このスキームを例示する。
最初の例では、冷却は任意の局所エネルギーミニマムから解放され、いくつかの改良を加えてグロバーの探索アルゴリズムにスキームを還元する。
第2の例では、冷却は豊富な局所エネルギーミニマに悩まされる。
これを回避するために、ハミルトニアンに、局所的なミニマに閉じ込められた集団が高次遷移によってトンネルアウトできるようなメカニズムを埋め込む。
このアイデアを,特定の組合せ最適化問題に対する数値シミュレーションで支持する。
また、量子多体基底状態の調製への応用についても議論し、冷却の時間スケールを決定する上で、スペクトルギャップが重要な要素であると主張した。
関連論文リスト
- Quantum computational advantage with constant-temperature Gibbs sampling [1.1930434318557157]
ある一定の有限温度で浴槽に結合した量子系はギブス状態に収束する。
この熱化過程は、量子計算の自然で物理的に動機づけられたモデルを定義する。
一定温度における量子ギブズ状態の測定結果分布のサンプリングについて検討する。
論文 参考訳(メタデータ) (2024-04-23T00:29:21Z) - Ground State Preparation via Dynamical Cooling [0.46664938579243576]
本稿では,量子力学シミュレーションに基づく基底状態生成アルゴリズムを提案する。
我々の主な洞察は、量子信号処理によるシフト符号関数によるハミルトン変換である。
このアプローチはエネルギーギャップの事前知識に頼らず、入浴をモデル化するために追加のキュービットを必要としない。
論文 参考訳(メタデータ) (2024-04-08T18:16:25Z) - Efficient Quantum Cooling Algorithm for Fermionic Systems [0.0]
フェルミオンハミルトニアンの基底状態調製のための冷却アルゴリズムを提案する。
自由理論の作用素から導かれる適切な相互作用ハミルトニアンを導出する。
そこで本研究では,このシステムの固有エネルギーを求めるための分光走査法を提案する。
論文 参考訳(メタデータ) (2024-03-21T15:59:32Z) - Efficient thermalization and universal quantum computing with quantum Gibbs samplers [2.403252956256118]
物質の熱状態の調製は量子シミュレーションにおいて重要な課題である。
以上の結果より, 関連する浄化液や熱場二重状態の効率的な断熱調製法が示された。
準局所散逸進化の族は、量子多体興味の大規模なクラスを効率的に準備する。
論文 参考訳(メタデータ) (2024-03-19T12:49:25Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
ワーッセルシュタイン量子モンテカルロ (WQMC) はフィッシャー・ラオ計量ではなくワーッセルシュタイン計量によって誘導される勾配流を用いており、テレポートではなく確率質量の輸送に対応する。
我々は、WQMCの力学が分子系の基底状態へのより高速な収束をもたらすことを実証的に実証した。
論文 参考訳(メタデータ) (2023-07-06T17:54:08Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
ディジタル量子コンピュータ上で状態の密度を推定する量子アルゴリズムを実装した。
我々は,量子H1-1トラップイオンチップ上での非可積分ハミルトニアン状態の密度を18ビットの制御レジスタに対して推定する。
論文 参考訳(メタデータ) (2023-03-23T17:46:28Z) - Programmable adiabatic demagnetization for systems with trivial and topological excitations [0.0]
量子コンピュータや量子シミュレータ上で任意のハミルトニアンの低エネルギー状態を作成するためのプロトコルを提案する。
このプロトコルは、固体システムを極低温に冷却するために使用される断熱脱磁性技術にインスパイアされている。
論文 参考訳(メタデータ) (2022-10-31T12:27:04Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
固有状態熱化仮説(ETH)は閉量子系における熱力学現象を理解する上で重要な役割を果たしている。
本稿では,ETHと高速熱化とグローバルギブス状態との厳密な関係を確立する。
この結果はカオス開量子系における有限時間熱化を説明する。
論文 参考訳(メタデータ) (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
熱浴に結合したオープン量子系の熱力学挙動を記述する一般的な理論を開発する。
我々のアプローチは、縮小された開系状態に対する正確な時間局所量子マスター方程式に基づいている。
論文 参考訳(メタデータ) (2021-09-24T11:19:22Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Taking the temperature of a pure quantum state [55.41644538483948]
温度は一見単純な概念で、量子物理学研究の最前線ではまだ深い疑問が浮かび上がっています。
本稿では,量子干渉による純状態の温度測定手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T18:18:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。