論文の概要: Ground State Preparation via Dynamical Cooling
- arxiv url: http://arxiv.org/abs/2404.05810v1
- Date: Mon, 8 Apr 2024 18:16:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 18:48:28.526218
- Title: Ground State Preparation via Dynamical Cooling
- Title(参考訳): 動的冷却による地盤状態の調製
- Authors: Danial Motlagh, Modjtaba Shokrian Zini, Juan Miguel Arrazola, Nathan Wiebe,
- Abstract要約: 本稿では,量子力学シミュレーションに基づく基底状態生成アルゴリズムを提案する。
我々の主な洞察は、量子信号処理によるシフト符号関数によるハミルトン変換である。
このアプローチはエネルギーギャップの事前知識に頼らず、入浴をモデル化するために追加のキュービットを必要としない。
- 参考スコア(独自算出の注目度): 0.46664938579243576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms for probing ground-state properties of quantum systems require good initial states. Projection-based methods such as eigenvalue filtering rely on inputs that have a significant overlap with the low-energy subspace, which can be challenging for large, strongly-correlated systems. This issue has motivated the study of physically-inspired dynamical approaches such as thermodynamic cooling. In this work, we introduce a ground-state preparation algorithm based on the simulation of quantum dynamics. Our main insight is to transform the Hamiltonian by a shifted sign function via quantum signal processing, effectively mapping eigenvalues into positive and negative subspaces separated by a large gap. This automatically ensures that all states within each subspace conserve energy with respect to the transformed Hamiltonian. Subsequent time-evolution with a perturbed Hamiltonian induces transitions to lower-energy states while preventing unwanted jumps to higher energy states. The approach does not rely on a priori knowledge of energy gaps and requires no additional qubits to model a bath. Furthermore, it makes $\tilde{\mathcal{O}}(d^{\,3/2}/\epsilon)$ queries to the time-evolution operator of the system and $\tilde{\mathcal{O}}(d^{\,3/2})$ queries to a block-encoding of the perturbation, for $d$ cooling steps and an $\epsilon$-accurate energy resolution. Our results provide a framework for combining quantum signal processing and Hamiltonian simulation to design heuristic quantum algorithms for ground-state preparation.
- Abstract(参考訳): 量子系の基底状態特性を探索するための量子アルゴリズムは、良好な初期状態を必要とする。
固有値フィルタリングのような射影に基づく手法は、大きな強相関系では困難である低エネルギー部分空間と大きな重なりを持つ入力に依存する。
この問題は、熱力学的冷却のような物理的に着想を得た動的アプローチの研究を動機付けている。
本研究では,量子力学シミュレーションに基づく基底状態生成アルゴリズムを提案する。
我々の主な洞察は、量子信号処理によってシフト符号関数によってハミルトンを変換し、固有値を大きなギャップで分離された正および負の部分空間に効果的にマッピングすることである。
これにより、各部分空間内のすべての状態が変換されたハミルトニアンに対してエネルギーを保存することが自動的に保証される。
その後、摂動ハミルトニアンによる時間進化は、不要な高エネルギー状態へのジャンプを防止しながら、低エネルギー状態への遷移を誘導する。
このアプローチはエネルギーギャップの事前知識に頼らず、入浴をモデル化するために追加のキュービットを必要としない。
さらに、システムの時間進化演算子に対する$\tilde{\mathcal{O}}(d^{\,3/2}/\epsilon)$クエリと、摂動のブロックエンコーディングに対する$$\tilde{\mathcal{O}}(d^{\,3/2})$クエリを、$d$冷却ステップと$\epsilon$正確なエネルギー解決のために$\tilde{\mathcal{O}}(d^{\,3/2})$にする。
本研究は,量子信号処理とハミルトンシミュレーションを組み合わせて,地中準備のためのヒューリスティックな量子アルゴリズムを設計するための枠組みを提供する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Orbital-free density functional theory with first-quantized quantum subroutines [0.0]
確率的想像時間進化(PITE)を用いた軌道自由密度汎関数理論(OFDFT)を実現する量子古典ハイブリッドスキームを提案する。
PITEはOFDFTの一部に適用され、各自己整合体(SCF)反復におけるハミルトニアン基底状態を探索する。
ハミルトンの基底状態エネルギーを得るには、回路深さが$O(log N_mathrmg)$が必要である。
論文 参考訳(メタデータ) (2024-07-23T05:34:11Z) - Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
量子コンピュータはスピン結合初期状態の形で支配的絡み合い構造を直接符号化することにより、強相関分子系を効率的にシミュレートできることを示す。
我々の研究は、古典的な挑戦的なシステムのための電子構造のスケーラブルな量子シミュレーションへの道を開いた。
論文 参考訳(メタデータ) (2024-04-29T17:14:21Z) - Quantum Computation by Cooling [0.0]
本稿では,断熱進化に基づく量子計算のための特定のハミルトンモデルを提案する。
この冷却法に基づく量子計算は、その計算能力において量子回路に基づく計算と等価であることを示す。
論文 参考訳(メタデータ) (2024-03-04T06:26:07Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
量子コンピュータの候補は、量子システムの低温特性をシミュレートすることである。
本稿は、ほとんどのランダムハミルトニアンに対して、最大混合状態は十分に良い試行状態であることを示す。
位相推定は、基底エネルギーに近いエネルギーの状態を効率的に生成する。
論文 参考訳(メタデータ) (2023-02-07T10:57:36Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - Quantum algorithms for Schrieffer-Wolff transformation [4.237239130164727]
シュリーファー・ウォルフ変換は退化摂動問題を解くことを目的としている。
これは、未摂動ハミルトニアンの低エネルギー部分空間における正確なハミルトニアンの低エネルギーダイナミクスを記述する。
このユニタリ変換は量子回路によって実現することができる。
論文 参考訳(メタデータ) (2022-01-31T15:27:57Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
量子コンピュータを構築する大きな動機は、強く相関した量子システムを効率的にシミュレートするツールを提供することである。
本研究では, 量子コンピュータ上で, 絶対零度まで冷却し, 強磁場で貫通する2次元電子ガスのシミュレーション方法について, 詳細なロードマップを示す。
論文 参考訳(メタデータ) (2020-03-05T10:17:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。