論文の概要: Deployment Challenges of Industrial Intrusion Detection Systems
- arxiv url: http://arxiv.org/abs/2403.01809v1
- Date: Mon, 4 Mar 2024 07:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-17 17:10:47.090354
- Title: Deployment Challenges of Industrial Intrusion Detection Systems
- Title(参考訳): 産業侵入検知システムの展開課題
- Authors: Konrad Wolsing, Eric Wagner, Frederik Basels, Patrick Wagner, Klaus Wehrle,
- Abstract要約: 産業制御システム(ICS)に対するサイバー攻撃による脅威のエスカレートは、研究において大きな注目を集めた。
この記事では、実践的なデプロイメントに大きく影響する、2つの重要な、そしてしばしば見過ごされる側面を強調します。
実産業環境における記録・ラベル付け攻撃の複雑さを考慮し,非現実的な管理IIDSに対する広範囲にわたる悪意あるトレーニングデータの必要性を示す。
- 参考スコア(独自算出の注目度): 4.312191099372558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the escalating threats posed by cyberattacks on Industrial Control Systems (ICSs), the development of customized Industrial Intrusion Detection Systems (IIDSs) received significant attention in research. While existing literature proposes effective IIDS solutions evaluated in controlled environments, their deployment in real-world industrial settings poses several challenges. This paper highlights two critical yet often overlooked aspects that significantly impact their practical deployment, i.e., the need for sufficient amounts of data to train the IIDS models and the challenges associated with finding suitable hyperparameters, especially for IIDSs training only on genuine ICS data. Through empirical experiments conducted on multiple state-of-the-art IIDSs and diverse datasets, we establish the criticality of these issues in deploying IIDSs. Our findings show the necessity of extensive malicious training data for supervised IIDSs, which can be impractical considering the complexity of recording and labeling attacks in actual industrial environments. Furthermore, while other IIDSs circumvent the previous issue by requiring only benign training data, these can suffer from the difficulty of setting appropriate hyperparameters, which likewise can diminish their performance. By shedding light on these challenges, we aim to enhance the understanding of the limitations and considerations necessary for deploying effective cybersecurity solutions in ICSs, which might be one reason why IIDSs see few deployments.
- Abstract(参考訳): インダストリアル・コントロール・システムズ(ICS)に対するサイバー攻撃による脅威のエスカレートにより、カスタマイズされたインダストリアル・侵入検知システム(IIDS)の開発が研究で大きな注目を集めた。
既存の文献では、制御された環境で評価された効果的なIIDSソリューションを提案するが、実際の産業環境でのデプロイメントにはいくつかの課題がある。
本稿は,IIDSモデルのトレーニングに十分な量のデータが必要であること,特に真のICSデータのみを対象としたIIDSのトレーニングにおいて,適切なハイパーパラメータの発見に関わる課題について述べる。
複数の最先端IIDSと多種多様なデータセットで実施された実証実験を通じて、これらの課題がIIDSをデプロイする際の臨界点を確立する。
本研究は, 実産業環境における記録・ラベル付け攻撃の複雑さを考慮し, 監視型IIDSに対する広範囲にわたる悪意あるトレーニングデータの必要性を示唆するものである。
さらに、他のIIDSは、良心的なトレーニングデータのみを必要とすることで、以前の問題を回避しているが、これらは適切なハイパーパラメータを設定することの難しさに悩まされ、性能も低下する可能性がある。
これらの課題に光を当てることで、ICSに効果的なサイバーセキュリティソリューションを展開するために必要な制限と考慮事項の理解を深めることを目指しています。
関連論文リスト
- Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
これらのシステムのほとんどは、機械学習(ML)やディープラーニング(DL)モデルのような、データ駆動のアプローチに依存しています。
本稿では,CANベースのIDSをセキュアにするための新しいフレームワークであるCANEDERLIを提案する。
論文 参考訳(メタデータ) (2024-04-06T14:54:11Z) - MISS: Memory-efficient Instance Segmentation Framework By Visual Inductive Priors Flow Propagation [8.727456619750983]
トレーニングデータセットへの視覚的事前の戦略的統合は、テストデータ分布との整合性を高める潜在的なソリューションとして現れます。
MISSの有効性を実証的に評価し、限られたデータ可用性とメモリ制約を特徴とするシナリオにおいて、賞賛可能な性能を示す。
論文 参考訳(メタデータ) (2024-03-18T08:52:23Z) - usfAD Based Effective Unknown Attack Detection Focused IDS Framework [3.560574387648533]
Internet of Things(IoT)とIndustrial Internet of Things(IIoT)は、サイバー脅威の増加につながっている。
10年以上にわたり、研究者は侵入検知システム(IDS)を開発するための教師付き機械学習技術を模索してきた。
既知のデータセット上でトレーニングされ、テストされたIDSは、ゼロデイまたは未知の攻撃を検出するのに失敗する。
我々は,攻撃の訓練サンプルを必要としない,半教師付き学習に基づくIDSのための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-03-17T11:49:57Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Digital Twins and the Future of their Use Enabling Shift Left and Shift Right Cybersecurity Operations [15.061739314361871]
Digital Twins(DT)は、スマートグリッドや製造といったスマートクリティカルシステム(SCS)ドメインのオペレーションを最適化し、パフォーマンスを監視する。
このビジョンペーパーは、データ駆動型およびルールベースセマンティックSDTモデルによるハイブリッドインテリジェンスを探索し、革新的な技術を通してインテリジェントなSDT設計の概要を示す。
論文 参考訳(メタデータ) (2023-09-24T11:20:58Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
モノのインターネット(IIoT)は、モノのインターネット技術を産業環境に統合することで、将来の製造施設に革命をもたらします。
大規模なIIoTデバイスのデプロイでは、無線ネットワークがさまざまなQoS(Quality-of-Service)要件でユビキタス接続をサポートすることは困難である。
まず、一般的な非クリティカルかつクリティカルなIIoTユースケースの要件を要約します。
次に、大規模なIIoTシナリオと対応する機械学習ソリューションのユニークな特性を、その制限と潜在的な研究方向で識別します。
論文 参考訳(メタデータ) (2021-03-10T20:10:53Z) - A Comparative Study of AI-based Intrusion Detection Techniques in
Critical Infrastructures [4.8041243535151645]
本稿では,重要なアプリケーションを追跡する無線接続型センサに対するAI駆動の侵入検知システムについて比較検討する。
具体的には、収集したトラフィックの侵入行動を認識するために、機械学習、深層学習、強化学習ソリューションの使用について、詳細な分析を行う。
その結果、Adaptively SupervisedおよびClustered Hybrid IDS、Boltzmann MachineベースのClustered IDS、Q-learningベースのIDSの3つの異なるIDSのパフォーマンス指標が示された。
論文 参考訳(メタデータ) (2020-07-24T20:55:57Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。