Successive quasienergy collapse and breakdown of photon blockade in the few-emitter limit
- URL: http://arxiv.org/abs/2403.02417v2
- Date: Mon, 13 May 2024 16:38:16 GMT
- Title: Successive quasienergy collapse and breakdown of photon blockade in the few-emitter limit
- Authors: T. Karmstrand, G. Johansson, R. Gutiérrez-Jáuregui,
- Abstract summary: emergent behavior that arises in many-body systems of increasing size follows universal laws.
Recent progress allows for the exploration of the few-emitter limit.
We explore this limit in the driven and damped Tavis--Cummings model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergent behavior that arises in many-body systems of increasing size follows universal laws that become apparent in order-to-disorder transitions. While this behavior has been traditionally studied for large numbers of emitters, recent progress allows for the exploration of the few-emitter limit, where correlations can be measured and connected to microscopic models to gain further insight into order-to-disorder transitions. We explore this few-body limit in the driven and damped Tavis--Cummings model, which describes a collection of atoms interacting with a driven and damped cavity mode. Our exploration revolves around the dressed states of the atomic ensemble and field, whose energies are shown to collapse as the driving field is increased to mark the onset of a dissipative quantum phase transition. The collapse occurs in stages and is an effect of light-matter correlations that are overlooked for single atoms and neglected in mean-field models. The implications of these correlations over the macroscopic observables of the system are presented. We encounter a shift in the expected transition point and an increased number of parity-broken states to choose from once the ordered phase is reached.
Related papers
- Entanglement Signature of the Superradiant Quantum Phase Transition [0.0]
Entanglement and quantum correlations between atoms are not usually considered key ingredients of the superradiant phase transition.
We consider the Tavis-Cummings model, a solvable system of two-levels atoms, coupled with a single-mode quantized electromagnetic field.
arXiv Detail & Related papers (2024-04-30T09:05:41Z) - Inter-Particle Correlations in the Dissipative Phase Transition of a
Collective Spin Model [0.9627066153699632]
In open quantum systems undergoing phase transitions, the intricate interplay between unitary and dissipative processes leaves many information-theoretic properties opaque.
We are here interested in interparticle correlations within such systems, specifically examining quantum entanglement, quantum discord, and classical correlation within the steady state of a driven-dissipative collective spin model.
arXiv Detail & Related papers (2023-08-25T18:48:22Z) - Dynamics and Phases of Nonunitary Floquet Transverse-Field Ising Model [0.5141137421503899]
We analyze the nonunitary Floquet- transverse-field I integrable model with complex nearest-neighbor couplings and complex transverse fields.
The scaling of entanglement entropy in steady states and the evolution after a quench are compatible with the non-Hermitian generalization of the quasiparticle picture of Calabrese and Cardy.
arXiv Detail & Related papers (2023-06-12T21:15:11Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Triviality of quantum trajectories close to a directed percolation
transition [0.0]
We study quantum circuits consisting of unitary gates, projective measurements, and control operations that steer the system towards a pure absorbing state.
Two types of phase transition occur as the rate of these control operations is increased: a measurement-induced entanglement transition, and a directed percolation transition into the absorbing state.
arXiv Detail & Related papers (2022-12-28T18:52:56Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Ergodicity breaking in an incommensurate system observed by OTOCs and
Loschmidt Echoes: From quantum diffusion to sub-diffusion [0.0]
We propose a new observable to study the transition in a spin chain under the disorder'' of a Harper-Hofstadter-Aubry-Andr'e on-site potential.
In the absence of many-body interactions, the ZOGE coincides with the inverse participation ratio of a Fermionic wave function.
arXiv Detail & Related papers (2021-06-14T12:41:32Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.