A round-trip multi-band quantum access network
- URL: http://arxiv.org/abs/2305.05919v1
- Date: Wed, 10 May 2023 06:14:13 GMT
- Title: A round-trip multi-band quantum access network
- Authors: Yuehan Xu, Tao Wang, Huanxi Zhao, Peng Huang and Guihua Zeng
- Abstract summary: We propose an expandable and cost-effective quantum access network, in which the round-trip structure makes quantum states travel in a circle to carry the information.
We realize multi-user secure key sharing through the continuous-variable QKD (CV-QKD) protocol.
The results show that each user can achieve excess noise suppression and 600 bps level secure key generation under 30 km standard fiber transmission.
- Score: 5.894846988315471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum network makes use of the quantum states to transmit data, which
will revolutionize classical communication and allow for some breakthrough
applications. The quantum key distribution (QKD) is one prominent application
of quantum networks, and can protect the data transmission through quantum
mechanics. In this work, we propose an expandable and cost-effective quantum
access network, in which the round-trip structure makes quantum states travel
in a circle to carry the information, and the multi-band technique is proposed
to support multi-user access. Based on the round-trip multi-band quantum access
network, we realize multi-user secure key sharing through the
continuous-variable QKD (CV-QKD) protocol. Due to the encoding characteristics
of CV-QKD, the quadrature components in different frequency bands can be used
to transmit key information for different users. The feasibility of this scheme
is confirmed by comprehensive noise analysis, and is verified by a
proof-of-principle experiment. The results show that each user can achieve
excess noise suppression and 600 bps level secure key generation under 30 km
standard fiber transmission. Such networks have the ability of multi-user
access theoretically and could be expanded by plugging in simple modules.
Therefore, it paves the way for near-term large-scale quantum secure networks.
Related papers
- High-Rate 16-node quantum access network based on passive optical
network [14.923361967583348]
In most built quantum secure networks, point-to-multipoint (PTMP) topology is one of the most popular schemes.
Here, we report an experimental demonstration of a high-rate 16-nodes quantum access network based on passive optical network.
arXiv Detail & Related papers (2024-03-05T01:44:13Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Continuous-variable quantum passive optical network [0.0]
We propose continuous-variable quantum passive-optical-network (CV-QPON) protocols, enabling deterministic and simultaneous secret key generation among all network users.
We show two protocols with different trust levels assigned to the network users and experimentally demonstrate key generation in a quantum access network with 8 users.
arXiv Detail & Related papers (2024-02-25T09:56:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Experimental upstream transmission of continuous variable quantum key
distribution access network [14.46130021829951]
Continuous-variable quantum key distribution can be implemented using only low-cost and off-the-shelf components.
We demonstrate the first upstream transmission quantum access networks using continuous-variable quantum key distribution.
arXiv Detail & Related papers (2023-05-03T08:27:02Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Implementation of a 46-node quantum metropolitan area network [19.917097498650243]
We present a field operation of a quantum metropolitan-area network with 46 nodes.
We show that all these challenges can be overcome with cutting-edge quantum technologies.
In this implementation, the final keys have been used for secure communication such as real-time voice telephone, text messaging, and file transmission with one-time pad encryption.
arXiv Detail & Related papers (2021-09-10T08:32:58Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - High key rate quantum conference key agreement with unconditional
security [13.32599647155171]
Quantum conference key agreement (CKA) is an important cryptographic primitive of quantum cryptography.
We propose a quantum CKA protocol of three users with information-theoretic security.
Our scheme can be widely implemented in the approaching large-scale quantum network.
arXiv Detail & Related papers (2020-06-18T01:47:17Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.