論文の概要: Quantum Zeno Monte Carlo for computing observables
- arxiv url: http://arxiv.org/abs/2403.02763v3
- Date: Thu, 9 May 2024 04:06:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 17:39:27.498925
- Title: Quantum Zeno Monte Carlo for computing observables
- Title(参考訳): 観測値計算のための量子Zeno Monte Carlo
- Authors: Mancheon Han, Hyowon Park, Sangkook Choi,
- Abstract要約: 我々はQuantum Zeno Monte Carlo (QZMC)と呼ばれる古典量子ハイブリッドアルゴリズムを導入する。
QZMCは計算コストを実証しながらノイズやトロッターエラーを処理できる。
量子位相推定と比較すると、QZMCは量子回路の深さを著しく減らしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent development of logical quantum processors signifies a pivotal moment in the progression from the noisy intermediate-scale quantum (NISQ) era to the fault-tolerant quantum computing (FTQC) era. These advanced devices are poised to alter the approach to problems that challenge classical computation methods. By transforming such problems into Hamiltonian frameworks and exploiting quantum mechanical properties, these processors have the potential to address complex issues within a polynomial computational time. However, despite their advancements, these processors remain vulnerable to disruptive noise, highlighting the need for robust quantum algorithms designed to manage noise effectively. In response to this need, we introduce a new classical-quantum hybrid algorithm termed Quantum Zeno Monte Carlo (QZMC). QZMC is capable of handling device noises and Trotter errors while demonstrating polynomial computational cost. This algorithm combines the quantum Zeno effect with Monte Carlo integration techniques, facilitating multi-step transitions toward targeted eigenstates of the Hamiltonian problem. Notably, QZMC does not require overlap between the initial state and the target state, nor does it depend on variational parameters. It can compute static and dynamic properties of the targeted states, including ground state energy, excited state energies, and Green's functions. Compared to quantum phase estimation, QZMC offers a significantly reduced quantum circuit depth. These features make QZMC an important algorithm for navigating the current transitional phase in quantum computing and beyond.
- Abstract(参考訳): 論理量子プロセッサの最近の発展は、ノイズの多い中間スケール量子(NISQ)時代からフォールトトレラント量子コンピューティング(FTQC)時代への進展における重要な瞬間を示している。
これらの先進的なデバイスは、古典的な計算手法に挑戦する問題に対するアプローチを変更することを目的としている。
このような問題をハミルトンのフレームワークに変換し、量子力学特性を利用することにより、これらのプロセッサは多項式計算時間内で複雑な問題に対処する可能性がある。
しかし、その進歩にもかかわらず、これらのプロセッサは破壊的なノイズに弱いままであり、ノイズを効果的に管理するために設計された堅牢な量子アルゴリズムの必要性を強調している。
この要求に応えるために、Quantum Zeno Monte Carlo (QZMC)と呼ばれる古典量子ハイブリッドアルゴリズムを導入する。
QZMCは、多項式計算コストを実証しながらデバイスノイズやトロッターエラーを処理できる。
このアルゴリズムは、量子ゼノ効果とモンテカルロ積分技術を組み合わせて、ハミルトン問題の標的固有状態への多段階遷移を容易にする。
特に、QZMCは初期状態とターゲット状態の重複を必要としない。
ターゲット状態の静的および動的特性、例えば基底状態エネルギー、励起状態エネルギー、グリーン関数を計算できる。
量子位相推定と比較すると、QZMCは量子回路の深さを著しく減らしている。
これらの特徴により、QZMCは量子コンピューティングなどにおける現在の遷移フェーズをナビゲートするための重要なアルゴリズムとなっている。
関連論文リスト
- Correcting and extending Trotterized quantum many-body dynamics [0.0]
量子的手法と古典的手法の強みを組み合わせたハイブリッドアンサッツを開発した。
このハイブリッドアンサッツは量子回路のSWAPゲートを回避できることを示す。
また、量子デバイス上の量子ビットの数を一定に保ちながら、システムサイズをいかに拡張できるかを示す。
論文 参考訳(メタデータ) (2025-02-19T14:50:12Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Simulating open quantum many-body systems using optimised circuits in
digital quantum simulation [0.0]
修正シュル・オーディンガー方程式(MSSE)のトロタライゼーションを伴う開量子系のモデルについて検討する。
MSSEにおけるリードエラーの最小化は、量子回路の最適化を可能にする。
我々はこのアルゴリズムをIBM Quantumデバイス上で実行し、現在のマシンはノイズのために定量的に正確な時間力学を与えるのが困難であることを示した。
論文 参考訳(メタデータ) (2022-03-27T13:00:02Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
与えられたハミルトニアンの基底状態と低い励起を見つけることは、物理学の多くの分野において最も重要な問題の一つである。
Noisy Intermediate-Scale Quantum (NISQ) デバイス上の量子コンピューティングは、そのような計算を効率的に実行する可能性を提供する。
現在の量子デバイスは、今でも固有の量子ノイズに悩まされている。
論文 参考訳(メタデータ) (2021-11-30T16:08:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
本稿では,量子コンピュータ上での高温・強結合クォークグルーオンプラズマ(QGP)における重クォークやジェットなどのハードプローブのダイナミクスをシミュレーションする枠組みを提案する。
我々の研究は、現在および短期量子デバイス上でのオープン量子システムをシミュレートできる可能性を示している。
論文 参考訳(メタデータ) (2020-10-07T18:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。