論文の概要: Fuzzy Datalog$^\exists$ over Arbitrary t-Norms
- arxiv url: http://arxiv.org/abs/2403.02933v1
- Date: Tue, 5 Mar 2024 12:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 14:46:58.562002
- Title: Fuzzy Datalog$^\exists$ over Arbitrary t-Norms
- Title(参考訳): 任意の t-ノルム上のファジィデータログ$^\exists$
- Authors: Matthias Lanzinger, Stefano Sferrazza, Przemys{\l}aw A. Wa{\l}\k{e}ga,
Georg Gottlob
- Abstract要約: ニューロ・シンボリックAIの領域における大きな課題の1つは、ニューラルデータとシンボリックデータの両方の存在下で論理的推論を行うことである。
これは知識グラフ、ニューラルモデル予測、構造化データベース、クラウドソースデータなどの異種データソースを組み合わせる必要がある。
規則体における古典的な接続の代わりとして任意のt-ノルムを許容することにより、規則ベースの標準言語Datalogをその設定に存在規則で一般化する。
結果のフォーマリズムにより、計算複雑性結果の保存と確立された推論技術の適用性を保ちながら、関連するデータを不確実性の度合いで推論することが可能となる。
- 参考スコア(独自算出の注目度): 5.464669506214195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main challenges in the area of Neuro-Symbolic AI is to perform
logical reasoning in the presence of both neural and symbolic data. This
requires combining heterogeneous data sources such as knowledge graphs, neural
model predictions, structured databases, crowd-sourced data, and many more. To
allow for such reasoning, we generalise the standard rule-based language
Datalog with existential rules (commonly referred to as tuple-generating
dependencies) to the fuzzy setting, by allowing for arbitrary t-norms in the
place of classical conjunctions in rule bodies. The resulting formalism allows
us to perform reasoning about data associated with degrees of uncertainty while
preserving computational complexity results and the applicability of reasoning
techniques established for the standard Datalog setting. In particular, we
provide fuzzy extensions of Datalog chases which produce fuzzy universal models
and we exploit them to show that in important fragments of the language,
reasoning has the same complexity as in the classical setting.
- Abstract(参考訳): ニューロシンボリックAIの領域における大きな課題の1つは、ニューラルデータとシンボリックデータの両方の存在下で論理的推論を行うことである。
これには、知識グラフ、ニューラルモデル予測、構造化データベース、クラウドソースデータなどの異種データソースを組み合わせる必要がある。
このような推論を可能にするため、ルール本体の古典的な結合の代わりに任意のtノルムを許容することにより、標準ルールベースのDatalogをファジィ設定に一般化する(一般にタプル生成依存と呼ばれる)。
その結果,計算複雑性を保ちながら不確実性の度合いに関連するデータの推論を行うことができ,標準データログ設定に確立された推論技術の適用性も向上する。
特に、ファジィユニバーサルモデルを生成するデータログチェイスのファジィ拡張を提供し、それらを利用して言語の重要な断片において、推論が古典的な設定と同じ複雑さを持つことを示す。
関連論文リスト
- Efficiently Learning Probabilistic Logical Models by Cheaply Ranking Mined Rules [9.303501974597548]
我々は、論理規則の精度とリコールを導入し、それらの構成をルールユーティリティとして定義する。
我々は、リレーショナルデータから論理モデルを学ぶためのスケーラブルなフレームワークであるSPECTRUMを紹介する。
論文 参考訳(メタデータ) (2024-09-24T16:54:12Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Neuro-Symbolic Recommendation Model based on Logic Query [16.809190067920387]
本稿では,ユーザ履歴のインタラクションを論理表現に変換するニューロシンボリックレコメンデーションモデルを提案する。
論理式はニューラルネットワークのモジュラー論理演算に基づいて計算される。
3つのよく知られたデータセットによる実験により,本手法は浅部,深部,セッション,推論モデルと比較し,性能が良好であることが確認された。
論文 参考訳(メタデータ) (2023-09-14T10:54:48Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - Structural Learning of Probabilistic Sentential Decision Diagrams under
Partial Closed-World Assumption [127.439030701253]
確率感性決定図は構造化分解可能な回路のクラスである。
本稿では,回路の論理的基盤を暗黙的に提供する部分閉世界仮定に基づく新しいスキームを提案する。
予備実験では、提案手法がトレーニングデータに適切に適合し、基礎となる論理的基盤と整合性を維持した上で、テストデータによく適合することを示した。
論文 参考訳(メタデータ) (2021-07-26T12:01:56Z) - Mining Feature Relationships in Data [0.0]
特徴関係マイニング(FRM)は、データの連続的または分類的特徴間の象徴的関係を自動的に発見する遺伝的プログラミング手法である。
提案手法は,特徴間の関係を明確に発見することを目的とした,最初の象徴的アプローチである。
実世界の様々なデータセットに対する実証テストにより、提案手法は高品質で単純な特徴関係を見つけることができることを示した。
論文 参考訳(メタデータ) (2021-02-02T07:06:16Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
本稿では,ラベル付き非構造データから解釈可能なルールを学習するニューラルシンボリック学習フレームワークNSLを提案する。
NSLは、機能抽出のためのトレーニング済みニューラルネットワークと、解集合セマンティクスに基づくルール学習のための最先端のILPシステムであるFastLASを組み合わせる。
NSLは、MNISTデータから堅牢なルールを学び、ニューラルネットワークやランダムフォレストベースラインと比較して、比較または優れた精度を達成できることを実証します。
論文 参考訳(メタデータ) (2020-12-09T13:02:44Z) - Neural Collaborative Reasoning [31.03627817834551]
協調推論(CR)のための協調フィルタリング(CF)を提案する。
CRは、各ユーザが推論空間の一部を知っていて、互いに好みを見積もるために、スペース内で推論するために協力することを意味します。
我々は、表現学習と論理的推論の力を統合し、表現が知覚的視点からデータ内の類似パターンをキャプチャする。
論文 参考訳(メタデータ) (2020-05-16T23:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。