A general approach to enhance the survivability of backdoor attacks by
decision path coupling
- URL: http://arxiv.org/abs/2403.02950v1
- Date: Tue, 5 Mar 2024 13:21:20 GMT
- Title: A general approach to enhance the survivability of backdoor attacks by
decision path coupling
- Authors: Yufei Zhao, Dingji Wang, Bihuan Chen, Ziqian Chen, Xin Peng
- Abstract summary: We propose Venom, the first generic backdoor attack to improve the survivability of existing backdoor attacks against model reconstruction-based defenses.
To realize the second task, we propose attention imitation loss to force the decision path of poisoned samples to couple with the crucial decision path of benign samples.
Our evaluation on two enhancers and three datasets has demonstrated that Venom significantly improves the survivability of eight state-of-the-art attacks against eight state-of-the-art defenses.
- Score: 8.361829415535018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backdoor attacks have been one of the emerging security threats to deep
neural networks (DNNs), leading to serious consequences. One of the mainstream
backdoor defenses is model reconstruction-based. Such defenses adopt model
unlearning or pruning to eliminate backdoors. However, little attention has
been paid to survive from such defenses. To bridge the gap, we propose Venom,
the first generic backdoor attack enhancer to improve the survivability of
existing backdoor attacks against model reconstruction-based defenses. We
formalize Venom as a binary-task optimization problem. The first is the
original backdoor attack task to preserve the original attack capability, while
the second is the attack enhancement task to improve the attack survivability.
To realize the second task, we propose attention imitation loss to force the
decision path of poisoned samples in backdoored models to couple with the
crucial decision path of benign samples, which makes backdoors difficult to
eliminate. Our extensive evaluation on two DNNs and three datasets has
demonstrated that Venom significantly improves the survivability of eight
state-of-the-art attacks against eight state-of-the-art defenses without
impacting the capability of the original attacks.
Related papers
- Towards Unified Robustness Against Both Backdoor and Adversarial Attacks [31.846262387360767]
Deep Neural Networks (DNNs) are known to be vulnerable to both backdoor and adversarial attacks.
This paper reveals that there is an intriguing connection between backdoor and adversarial attacks.
A novel Progressive Unified Defense algorithm is proposed to defend against backdoor and adversarial attacks simultaneously.
arXiv Detail & Related papers (2024-05-28T07:50:00Z) - Breaking the False Sense of Security in Backdoor Defense through Re-Activation Attack [32.74007523929888]
We re-investigate the characteristics of backdoored models after defense.
We find that the original backdoors still exist in defense models derived from existing post-training defense strategies.
We empirically show that these dormant backdoors can be easily re-activated during inference.
arXiv Detail & Related papers (2024-05-25T08:57:30Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
Data-poisoning backdoor attacks are serious security threats to machine learning models.
In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned.
We propose a novel defense approach called PDB (Proactive Defensive Backdoor)
arXiv Detail & Related papers (2024-05-25T07:52:26Z) - BELT: Old-School Backdoor Attacks can Evade the State-of-the-Art Defense with Backdoor Exclusivity Lifting [21.91491621538245]
We propose and investigate a new characteristic of backdoor attacks, namely, backdoor exclusivity.
Backdoor exclusivity measures the ability of backdoor triggers to remain effective in the presence of input variation.
Our approach substantially enhances the stealthiness of four old-school backdoor attacks, at almost no cost of the attack success rate and normal utility.
arXiv Detail & Related papers (2023-12-08T08:35:16Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Beating Backdoor Attack at Its Own Game [10.131734154410763]
Deep neural networks (DNNs) are vulnerable to backdoor attack.
Existing defense methods have greatly reduced attack success rate.
We propose a highly effective framework which injects non-adversarial backdoors targeting poisoned samples.
arXiv Detail & Related papers (2023-07-28T13:07:42Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z) - Rethink Stealthy Backdoor Attacks in Natural Language Processing [35.6803390044542]
The capacity of stealthy backdoor attacks is overestimated when categorized as backdoor attacks.
We propose a new metric called attack successful rate difference (ASRD), which measures the ASR difference between clean state and poison state models.
Our method achieves significantly better performance than state-of-the-art defense methods against stealthy backdoor attacks.
arXiv Detail & Related papers (2022-01-09T12:34:12Z) - On Certifying Robustness against Backdoor Attacks via Randomized
Smoothing [74.79764677396773]
We study the feasibility and effectiveness of certifying robustness against backdoor attacks using a recent technique called randomized smoothing.
Our results show the theoretical feasibility of using randomized smoothing to certify robustness against backdoor attacks.
Existing randomized smoothing methods have limited effectiveness at defending against backdoor attacks.
arXiv Detail & Related papers (2020-02-26T19:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.