論文の概要: Towards Democratized Flood Risk Management: An Advanced AI Assistant Enabled by GPT-4 for Enhanced Interpretability and Public Engagement
- arxiv url: http://arxiv.org/abs/2403.03188v2
- Date: Fri, 20 Dec 2024 20:00:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:48.016992
- Title: Towards Democratized Flood Risk Management: An Advanced AI Assistant Enabled by GPT-4 for Enhanced Interpretability and Public Engagement
- Title(参考訳): 民主的な洪水リスクマネジメントを目指して - GPT-4が実現した高度なAIアシスタント-
- Authors: Rafaela Martelo, Kimia Ahmadiyehyazdi, Ruo-Qian Wang,
- Abstract要約: GPT-4を利用したAIアシスタントを開発した。
このツールは、意思決定者、一般人、および予測者とのコミュニケーションを強化する。
洪水警報を検索し、問い合わせに回答し、リアルタイム警告と洪水マップとソーシャル脆弱性データを統合する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Real-time flood forecasting is vital for effective emergency responses, but bridging the gap between complex numerical models and practical decision-making remains challenging. Decision-makers often rely on experts, while the public struggles to interpret flood risk information. To address this, we developed a customized AI Assistant powered by GPT-4. This tool enhances communication between decision-makers, the public, and forecasters, requiring no specialized knowledge. The framework leverages GPT-4's advanced natural language capabilities to search flood alerts, answer inquiries, and integrate real-time warnings with flood maps and social vulnerability data. It simplifies complex flood zone information into actionable advice. The prototype was evaluated on relevance, error resilience, and contextual understanding, with performance compared across different GPT models. This research advances flood risk management by making critical information more accessible and engaging, demonstrating the potential of AI tools like GPT-4 in addressing social and environmental challenges.
- Abstract(参考訳): リアルタイム洪水予測は効果的な緊急対応には不可欠であるが、複雑な数値モデルと実際の意思決定のギャップを埋めることは依然として困難である。
意思決定者はしばしば専門家に頼り、公衆は洪水の危険情報を解釈するのに苦労する。
そこで我々は,GPT-4を利用したAIアシスタントを開発した。
このツールは、意思決定者、一般人、および予測者とのコミュニケーションを強化し、特別な知識を必要としない。
このフレームワークは、GPT-4の高度な自然言語機能を活用して、洪水警報を検索し、問い合わせに回答し、リアルタイム警告と洪水マップと社会的脆弱性データを統合する。
複雑な洪水帯情報を実用的なアドバイスに単純化する。
プロトタイプは、関連性、エラーレジリエンス、コンテキスト理解に基づいて評価され、異なるGPTモデル間で性能が比較された。
本研究は,GPT-4のようなAIツールが社会的・環境的課題に対処する可能性を実証し,重要な情報をよりアクセシビリティとエンゲージメントにすることで,洪水リスク管理を促進する。
関連論文リスト
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - AI for Extreme Event Modeling and Understanding: Methodologies and Challenges [7.636789744934743]
この論文は、AIが極端な出来事(洪水、干ばつ、山火事、熱波など)を分析するためにどのように使われているのかをレビューする。
限られたデータに対処し、情報をリアルタイムで統合し、モデルをデプロイし、それらを理解できるようにするというハードルについて論じる。
私たちは、実践的、理解可能、信頼に値するAIソリューションを作成するために、さまざまな分野にわたるコラボレーションの必要性を強調します。
論文 参考訳(メタデータ) (2024-06-28T17:45:25Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - CAUS: A Dataset for Question Generation based on Human Cognition Leveraging Large Language Models [4.962252439662465]
本稿では,Curious About Uncertain Sceneデータセットを導入し,大規模言語モデルを用いて人間の認知過程をエミュレートし,不確実性を解決する。
我々のアプローチは、推論とクエリの生成を刺激するために、不確実性に埋め込まれたシーン記述を提供することである。
以上の結果から, GPT-4は, 適切な文脈や指示が与えられた場合に, 適切な質問を効果的に生成し, そのニュアンスを把握できることが示唆された。
論文 参考訳(メタデータ) (2024-04-18T01:31:19Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - The Reasoning Under Uncertainty Trap: A Structural AI Risk [0.0]
RUUを人間と機械の両方にとって困難なものにしているのは、レポートにある。
この誤用リスクが、基盤となる構造的リスクのネットワークとどのように結びつくのかを詳述する。
論文 参考訳(メタデータ) (2024-01-29T17:16:57Z) - PromptAgent: Strategic Planning with Language Models Enables
Expert-level Prompt Optimization [60.00631098364391]
PromptAgentは、エキスパートレベルのプロンプトを、専門家による手工芸品と同等の品質で作成する最適化手法である。
PromptAgentは人間のような試行錯誤の探索にインスパイアされ、専門家レベルの正確な洞察と詳細な指示を誘導する。
PromptAgentを3つの実践領域にまたがる12のタスクに適用する。
論文 参考訳(メタデータ) (2023-10-25T07:47:01Z) - Enhancing Evacuation Planning through Multi-Agent Simulation and
Artificial Intelligence: Understanding Human Behavior in Hazardous
Environments [0.0]
本稿では人工知能(AI)技術,特にマルチエージェントシステム(MAS)を用いて避難シミュレーションモデルを構築した。
本研究の目的は、このような苦しい状況下で、個人がどのように反応し、反応するかについての理解を深めることである。
論文 参考訳(メタデータ) (2023-06-11T08:13:42Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
我々は、ステークホルダーが包括的で関連性があり、信頼できる情報にタイムリーにアクセスできるようにする、多段階の緊急対応ツールを目指しています。
本ツールは, 浸水リスク位置, 道路ネットワーク強度, 浸水マップ, 浸水地や被害インフラを推定するコンピュータビジョンセマンティックセマンティックセマンティックセグメンテーションなど, オープンソースの地理空間データの複数の層を符号化して構成する。
これらのデータレイヤを組み合わせて、緊急時の避難経路の検索や、最初に影響を受けたエリアで最初の応答者のために利用可能な宿泊場所のリストを提供するなど、機械学習アルゴリズムの入力データとして利用する。
論文 参考訳(メタデータ) (2020-05-28T18:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。