論文の概要: Neural network backflow for ab-initio quantum chemistry
- arxiv url: http://arxiv.org/abs/2403.03286v2
- Date: Fri, 01 Nov 2024 16:52:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 14:31:56.909542
- Title: Neural network backflow for ab-initio quantum chemistry
- Title(参考訳): ab-initio量子化学のためのニューラルネットワーク逆流
- Authors: An-Jun Liu, Bryan K. Clark,
- Abstract要約: ニューラルネットワークのバックフロー波動関数を用いて,分子ハミルトニアンの最先端エネルギーを実現する方法を示す。
私たちが研究した分子では、NNBFはCCSDや他のニューラルネットワーク量子状態よりも低いエネルギー状態を与える。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The ground state of second-quantized quantum chemistry Hamiltonians provides access to an important set of chemical properties. Wavefunctions based on ML architectures have shown promise in approximating these ground states in a variety of physical systems. In this work, we show how to achieve state-of-the-art energies for molecular Hamiltonians using the the neural network backflow wave-function. To accomplish this, we optimize this ansatz with a variant of the deterministic optimization scheme based on SCI introduced by [Li, et. al JCTC (2023)] which we find works better than standard MCMC sampling. For the molecules we studied, NNBF gives lower energy states than both CCSD and other neural network quantum states. We systematically explore the role of network size as well as optimization parameters in improving the energy. We find that while the number of hidden layers and determinants play a minor role in improving the energy, there is significant improvements in the energy from increasing the number of hidden units as well as the batch size used in optimization with the batch size playing a more important role.
- Abstract(参考訳): 第2量子化量子化学の基底状態であるハミルトニアンは重要な化学的性質の集合へのアクセスを提供する。
MLアーキテクチャに基づく波動関数は、様々な物理系における基底状態の近似において有望であることを示す。
本研究では,ニューラルネットワークのバックフロー波動関数を用いて,分子ハミルトニアンの最先端エネルギーを実現する方法を示す。
これを実現するため,[Li, et. al JCTC (2023)]によって導入されたSCIに基づく決定論的最適化スキームの変種を用いて,このアンザッツを最適化する。
私たちが研究した分子では、NNBFはCCSDや他のニューラルネットワーク量子状態よりも低いエネルギー状態を与える。
エネルギー改善におけるネットワークサイズと最適化パラメータの役割を体系的に検討する。
隠れた層数や行列式がエネルギー向上に小さな役割を果たしているのに対し、隠れた単位数の増加や、バッチサイズの最適化に使用されるバッチサイズがより重要な役割を担っていることから、エネルギーの大幅な改善が期待できる。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Towards Efficient Quantum Computation of Molecular Ground State Energies using Bayesian Optimization with Priors over Surface Topology [0.0]
変分量子固有解法(VQEs)は、現代の量子コンピュータにおける分子基底状態とエネルギーの計算における有望なアプローチである。
量子資源の少ないVQEを解くために,数ショットの回路観測を利用する標準的なベイズ最適化アルゴリズムの修正を提案する。
論文 参考訳(メタデータ) (2024-07-10T18:01:50Z) - Quantum Equilibrium Propagation: Gradient-Descent Training of Quantum Systems [0.6526824510982799]
平衡伝播はエネルギーベースのシステムのトレーニングフレームワークである。
EPはシステム物理を用いてコスト関数の勾配勾配を求める。
EPを量子系に拡張し、最小化されるエネルギー関数は平均エネルギー関数である。
論文 参考訳(メタデータ) (2024-06-02T21:58:54Z) - Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
我々は,ノイズ中間スケール量子(NISQ)ハードウェアを用いて,分子系の基底状態エネルギーを正確に計算することを目的とした射影形式を開発した。
本研究では,将来の耐故障システムにおいて,必要な精度を同時に確保しながら,ノイズ下での優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-13T13:27:40Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
この研究は、メッセージパッシングアーキテクチャに基づいたバックフロー変換を含む、新しいPfaffian-Jastrowニューラルネットワーク量子状態を導入する。
逆スピン対分布関数による強いペアリング相関の出現を観察する。
この結果から, ニューラルネットワーク量子状態は, 超低温フェルミガスの研究に有望な戦略をもたらすことが示唆された。
論文 参考訳(メタデータ) (2023-05-15T17:46:09Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Scalable neural quantum states architecture for quantum chemistry [5.603379389073144]
量子状態のニューラルネットワーク表現の変分最適化は、相互作用するフェルミオン問題の解決に成功している。
本稿では,Ab-initio量子化学応用のための,ニューラルネットワークに基づく変分量子モンテカルロ計算を改善するための拡張並列化手法を提案する。
論文 参考訳(メタデータ) (2022-08-11T04:40:02Z) - Investigating Network Parameters in Neural-Network Quantum States [0.0]
ニューラルネットワークを用いた量子状態表現は強力なツールとして認識され始めている。
最も単純なニューラルネットワークの1つである制限ボルツマンマシン(RBM)を、1次元(1次元)逆場イジング(TFI)モデルの基底状態表現に適用する。
1次元TFIモデルにおける秩序相から乱相への量子相転移は, ニューラルネットワークパラメータの挙動に明らかに反映されている。
論文 参考訳(メタデータ) (2022-02-03T17:13:21Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。