論文の概要: Scalable neural quantum states architecture for quantum chemistry
- arxiv url: http://arxiv.org/abs/2208.05637v1
- Date: Thu, 11 Aug 2022 04:40:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-12 13:47:00.565547
- Title: Scalable neural quantum states architecture for quantum chemistry
- Title(参考訳): 量子化学のためのスケーラブルな量子状態アーキテクチャ
- Authors: Tianchen Zhao, James Stokes, Shravan Veerapaneni
- Abstract要約: 量子状態のニューラルネットワーク表現の変分最適化は、相互作用するフェルミオン問題の解決に成功している。
本稿では,Ab-initio量子化学応用のための,ニューラルネットワークに基づく変分量子モンテカルロ計算を改善するための拡張並列化手法を提案する。
- 参考スコア(独自算出の注目度): 5.603379389073144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational optimization of neural-network representations of quantum states
has been successfully applied to solve interacting fermionic problems. Despite
rapid developments, significant scalability challenges arise when considering
molecules of large scale, which correspond to non-locally interacting quantum
spin Hamiltonians consisting of sums of thousands or even millions of Pauli
operators. In this work, we introduce scalable parallelization strategies to
improve neural-network-based variational quantum Monte Carlo calculations for
ab-initio quantum chemistry applications. We establish GPU-supported local
energy parallelism to compute the optimization objective for Hamiltonians of
potentially complex molecules. Using autoregressive sampling techniques, we
demonstrate systematic improvement in wall-clock timings required to achieve
CCSD baseline target energies. The performance is further enhanced by
accommodating the structure of resultant spin Hamiltonians into the
autoregressive sampling ordering. The algorithm achieves promising performance
in comparison with the classical approximate methods and exhibits both running
time and scalability advantages over existing neural-network based methods.
- Abstract(参考訳): 量子状態のニューラルネットワーク表現の変分最適化は、相互作用するフェルミオン問題の解決に成功している。
急速な発展にもかかわらず、大規模な分子を考えると、数千から数百万のパウリ作用素からなる非局所的に相互作用する量子スピンハミルトニアンに対応する大きなスケーラビリティの問題が発生する。
本稿では,ニューラルネットワークに基づく変分量子モンテカルロ計算をab-initio量子化学に応用するために,スケーラブルな並列化手法を導入する。
複雑な分子のハミルトニアンの最適化目標を計算するために,gpuによる局所エネルギー並列性を確立した。
自動回帰サンプリング技術を用いて,CCSDベースライン目標エネルギーを達成するために必要な壁面時間タイミングの体系的改善を示す。
結果のスピンハミルトニアンの構造を自己回帰サンプリング順序に調節することで、さらに性能が向上する。
このアルゴリズムは従来の近似手法と比較して有望な性能を達成し、既存のニューラルネット方式よりも実行時間とスケーラビリティの優位性を示す。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Hamiltonian Quantum Generative Adversarial Networks [4.806505912512235]
本稿では、未知の入力量子状態を生成することを学ぶために、ハミルトン量子生成共振器ネットワーク(HQuGAN)を提案する。
提案手法は,多体多体量子状態に絡み合った多体量子状態の学習能力を数値的に示す。
論文 参考訳(メタデータ) (2022-11-04T16:53:55Z) - Classical simulation of short-time quantum dynamics [0.0]
局所観測可能量と非局所量のダイナミクスを近似する古典的アルゴリズムを提案する。
我々は、新しい量子速度限界、動的相転移の束縛、および製品状態の束縛された濃度を短期間に発展させた。
論文 参考訳(メタデータ) (2022-10-20T18:00:04Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Autoregressive neural-network wavefunctions for ab initio quantum
chemistry [3.5987961950527287]
新しい自己回帰型ニューラルネットワーク(ARN)による電子波動関数のパラメータ化
これにより、最大30個のスピン軌道を持つ分子上で電子構造計算を行うことができる。
論文 参考訳(メタデータ) (2021-09-26T13:44:41Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
オープン量子システムのダイナミクスに対処するためのアプローチを提案する。
自己回帰変換ニューラルネットワークを用いて量子状態をコンパクトに表現する。
効率的なアルゴリズムは、リウヴィリア超作用素の力学をシミュレートするために開発された。
論文 参考訳(メタデータ) (2020-09-11T18:00:00Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。