論文の概要: Graph Neural Ordinary Differential Equations for Coarse-Grained Socioeconomic Dynamics
- arxiv url: http://arxiv.org/abs/2407.18108v1
- Date: Thu, 25 Jul 2024 15:12:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:39:06.777306
- Title: Graph Neural Ordinary Differential Equations for Coarse-Grained Socioeconomic Dynamics
- Title(参考訳): 粗粒社会経済ダイナミクスのグラフニューラル正規微分方程式
- Authors: James Koch, Pranab Roy Chowdhury, Heng Wan, Parin Bhaduri, Jim Yoon, Vivek Srikrishnan, W. Brent Daniel,
- Abstract要約: 時空間社会経済力学をモデル化するためのデータ駆動型機械学習手法を提案する。
我々の研究結果は、ボルチモアのケーススタディから、この機械学習で強化された粗い粒度モデルが強力な機器であることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data-driven machine-learning approach for modeling space-time socioeconomic dynamics. Through coarse-graining fine-scale observations, our modeling framework simplifies these complex systems to a set of tractable mechanistic relationships -- in the form of ordinary differential equations -- while preserving critical system behaviors. This approach allows for expedited 'what if' studies and sensitivity analyses, essential for informed policy-making. Our findings, from a case study of Baltimore, MD, indicate that this machine learning-augmented coarse-grained model serves as a powerful instrument for deciphering the complex interactions between social factors, geography, and exogenous stressors, offering a valuable asset for system forecasting and resilience planning.
- Abstract(参考訳): 時空間社会経済力学をモデル化するためのデータ駆動型機械学習手法を提案する。
粗粒微細な観察を通して、我々のモデリングフレームワークは、これらの複雑なシステムを通常の微分方程式の形で、抽出可能な機械的関係の集合に単純化し、臨界系の挙動を保存します。
このアプローチは、情報的政策決定に不可欠な「もし」研究と感度分析の迅速化を可能にする。
我々の研究結果は、ボルチモアのケーススタディから、この機械学習で強化された粗粒度モデルが、社会要因、地理、および外因性ストレスの複雑な相互作用を解明するための強力な手段であり、システムの予測とレジリエンス計画に有用な資産であることを示している。
関連論文リスト
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
非線形状態空間グラフィカルモデルのための低ランク構造化変分オートエンコーダフレームワークを提案する。
我々のアプローチは、より予測的な生成モデルを学ぶ能力を一貫して示している。
論文 参考訳(メタデータ) (2024-03-03T02:19:49Z) - Data driven modeling for self-similar dynamics [1.0790314700764785]
本稿では,自己相似性を先行知識として組み込んだマルチスケールニューラルネットワークフレームワークを提案する。
決定論的ダイナミクスの場合、我々のフレームワークは力学が自己相似かどうかを識別できる。
本手法は,自己相似システムにおける電力法指数を同定する。
論文 参考訳(メタデータ) (2023-10-12T12:39:08Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - AI-Assisted Discovery of Quantitative and Formal Models in Social
Science [6.39651637213537]
本システムは,経済・社会学における実世界のデータから解釈可能なモデルを発見するのに有効であることを示す。
本稿では,このAI支援フレームワークが,社会科学研究でよく用いられるパラメトリックモデルと非パラメトリックモデルとを橋渡しすることができることを提案する。
論文 参考訳(メタデータ) (2022-10-02T16:25:47Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
本稿では,グローバルに結合した地図システムから生じるマクロな動きについて考察する。
我々は、機械学習アプローチと粗粒度プロセスの遷移確率の直接数値計算の両方を用いて、マクロ力学のための粗粒度マルコフプロセスを構築した。
我々は,アトラクタの有効次元,メモリ効果の持続性,ダイナミクスのマルチスケール構造について重要な情報を推測することができる。
論文 参考訳(メタデータ) (2020-11-08T15:38:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。