論文の概要: An Ensemble Framework for Explainable Geospatial Machine Learning Models
- arxiv url: http://arxiv.org/abs/2403.03328v2
- Date: Mon, 16 Dec 2024 18:27:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:56:20.931326
- Title: An Ensemble Framework for Explainable Geospatial Machine Learning Models
- Title(参考訳): 説明可能な地理空間機械学習モデルのためのアンサンブルフレームワーク
- Authors: Lingbo Liu,
- Abstract要約: GeoShapleyメソッドは、機械学習(ML)とShapley値を統合し、地理的特徴の寄与を説明する。
ここでは,このギャップを埋めるために,局所空間重み付け方式をXAIとML技術と組み合わせるためのアンサンブルフレームワークを提案する。
このフレームワークは地理的回帰と分類の両方で機能し、複雑な空間現象を理解するための新しいアプローチを提供する。
- 参考スコア(独自算出の注目度): 16.010404125829876
- License:
- Abstract: Analyzing spatially varying effects is pivotal in geographic analysis. However, accurately capturing and interpreting this variability is challenging due to the increasing complexity and non-linearity of geospatial data. Recent advancements in integrating Geographically Weighted (GW) models with artificial intelligence (AI) methodologies offer novel approaches. However, these methods often focus on single algorithms and emphasize prediction over interpretability. The recent GeoShapley method integrates machine learning (ML) with Shapley values to explain the contribution of geographical features, advancing the combination of geospatial ML and explainable AI (XAI). Yet, it lacks exploration of the nonlinear interactions between geographical features and explanatory variables. Herein, an ensemble framework is proposed to merge local spatial weighting scheme with XAI and ML technologies to bridge this gap. Through tests on synthetic datasets and comparisons with GWR, MGWR, and GeoShapley, this framework is verified to enhance interpretability and predictive accuracy by elucidating spatial variability. Reproducibility is explored through the comparison of spatial weighting schemes and various ML models, emphasizing the necessity of model reproducibility to address model and parameter uncertainty. This framework works in both geographic regression and classification, offering a novel approach to understanding complex spatial phenomena.
- Abstract(参考訳): 空間的に異なる影響を分析することは、地理的解析において重要である。
しかし,地理空間データの複雑化と非線形性のため,この変数の正確な取得と解釈は困難である。
地理重み付け(GW)モデルと人工知能(AI)方法論の統合の最近の進歩は、新しいアプローチを提供する。
しかし、これらの手法は単一のアルゴリズムに焦点を合わせ、解釈可能性よりも予測を強調することが多い。
最近のGeoShapleyメソッドは、機械学習(ML)とShapley値を統合して、地理的特徴の寄与を説明し、地理空間MLと説明可能なAI(XAI)の組み合わせを推進している。
しかし、地理的特徴と説明変数の間の非線形相互作用の探索は欠如している。
そこで,このギャップを埋めるために,局所空間重み付け手法をXAIとML技術と組み合わせるためのアンサンブルフレームワークを提案する。
合成データセットの検証とGWR,MGWR,GeoShapleyとの比較により,空間変動の解明による解釈性と予測精度の向上が検証された。
空間重み付けスキームと各種MLモデルの比較により再現性について検討し、モデルとパラメータの不確実性に対処するためのモデル再現性の必要性を強調した。
このフレームワークは地理的回帰と分類の両方で機能し、複雑な空間現象を理解するための新しいアプローチを提供する。
関連論文リスト
- An Interpretable Implicit-Based Approach for Modeling Local Spatial Effects: A Case Study of Global Gross Primary Productivity [9.352810748734157]
地球科学では、観測されていない要因は非定常分布を示し、特徴と対象の関係が空間的不均一性を示す。
地理的機械学習タスクでは、従来の統計学習手法は空間的不均一性を捉えるのに苦労することが多い。
我々は、深層ニューラルネットワークを用いた空間差と並行して、異なる場所で共通する特徴を同時にモデル化する、新しい視点を提案する。
論文 参考訳(メタデータ) (2025-02-10T05:44:54Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Evaluation Challenges for Geospatial ML [5.576083740549639]
地理空間機械学習モデルと地図は、科学と政策の下流分析にますます使われている。
空間機械学習出力の正確な測定方法は議論の的となっている。
本稿では,グローバルあるいはリモートセンシングされたデータセットを用いた地理空間機械学習におけるモデル評価のユニークな課題について述べる。
論文 参考訳(メタデータ) (2023-03-31T14:24:06Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
自己教師型学習(SSL)はコンピュータビジョンにおいて望ましいパラダイムとして登場した。
本稿では,各特徴空間内の局所的近傍を用いて異なるSSLモデルを分析するためのデータ駆動幾何学的手法を提案する。
論文 参考訳(メタデータ) (2022-09-18T18:15:38Z) - Extending regionalization algorithms to explore spatial process
heterogeneity [5.158953116443068]
そこで本稿では,空間状態記述のための2つの新しいアルゴリズムである2段Kモデルと2段Kモデルを提案する。
これらの結果から,3つのアルゴリズムが既存手法よりも優れている,あるいは同等の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-06-19T15:09:23Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
本研究は,空間予測誤差プロファイル (SPEP) と空間変数重要度プロファイル (SVIP) を,新しいモデルに依存しない評価・解釈ツールとして提案する。
統計学的手法、線形モデル、ランダムフォレスト、ハイブリッドアルゴリズムのSPEPとSVIPは、顕著な差異と関連する類似性を示している。
この新しい診断ツールは空間データ科学のツールキットを充実させ、MLモデルの解釈、選択、設計を改善する可能性がある。
論文 参考訳(メタデータ) (2021-11-13T01:50:36Z) - Modeling Massive Spatial Datasets Using a Conjugate Bayesian Linear
Regression Framework [0.0]
階層的モデリングフレームワークに簡単に組み込むことのできる、様々なスケーラブルな空間プロセスモデルが提案されている。
本稿では,空間過程の推論を迅速に行うことができる共役ベイズ線形回帰モデルとして,点参照空間過程モデルをどうキャストするかを論じる。
論文 参考訳(メタデータ) (2021-09-09T17:46:00Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
この貢献は、特徴空間変換のレンズを通して機械学習モデルを解釈する新しいアプローチを提案する。
非条件的および条件付きポストホック診断ツールの拡張に使用できる。
提案手法の可能性を実証するために,46特徴のリモートセンシング土地被覆分類の事例研究を行った。
論文 参考訳(メタデータ) (2021-04-09T10:48:11Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Geostatistical Learning: Challenges and Opportunities [0.0]
本稿では,地理統計学的(移動)学習問題を紹介し,地理空間データからの学習の課題を説明する。
合成ガウス過程データとニュージーランドの地球物理調査の実データを用いた実験は、いずれの手法も地理空間的文脈におけるモデル選択に適していないことを示している。
論文 参考訳(メタデータ) (2021-02-17T14:33:15Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。