論文の概要: Diffusion-based Generative Prior for Low-Complexity MIMO Channel
Estimation
- arxiv url: http://arxiv.org/abs/2403.03545v1
- Date: Wed, 6 Mar 2024 08:47:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 15:46:34.983359
- Title: Diffusion-based Generative Prior for Low-Complexity MIMO Channel
Estimation
- Title(参考訳): 低複雑さMIMOチャネル推定のための拡散に基づく生成優先
- Authors: Benedikt Fesl and Michael Baur and Florian Strasser and Michael Joham
and Wolfgang Utschick
- Abstract要約: 本研究は拡散モデルに基づく新しいチャネル推定器を提案する。
信号対雑音比(SNR)情報を位置埋め込みしたCNNは、疎角領域におけるチャネル分布を学習して設計する。
その結果, 生成前駆体を用いた最先端チャネル推定装置よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 12.192048506302015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a novel channel estimator based on diffusion models (DMs),
one of the currently top-rated generative models. Contrary to related works
utilizing generative priors, a lightweight convolutional neural network (CNN)
with positional embedding of the signal-to-noise ratio (SNR) information is
designed by learning the channel distribution in the sparse angular domain.
Combined with an estimation strategy that avoids stochastic resampling and
truncates reverse diffusion steps that account for lower SNR than the given
pilot observation, the resulting DM estimator has both low complexity and
memory overhead. Numerical results exhibit better performance than
state-of-the-art channel estimators utilizing generative priors.
- Abstract(参考訳): 本研究では拡散モデル(DM)に基づく新しいチャネル推定器を提案する。
生成前処理を用いる関連研究とは対照的に、信号対雑音比(snr)情報を位置埋め込みした軽量畳み込みニューラルネットワーク(cnn)を疎角領域におけるチャネル分布を学習して設計する。
確率的再サンプリングを回避し、所与のパイロット観測よりも低いSNRを考慮した逆拡散ステップを切断する推定戦略と組み合わせることで、結果のDM推定器は複雑さとメモリオーバーヘッドの両方を低くする。
数値計算により,生成前処理を用いた最先端チャネル推定器よりも優れた性能を示す。
関連論文リスト
- Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for
Inverse Problem [97.64313409741614]
ランダム重み付きDNNジェネレータを反転させるため,Langevinアルゴリズムの定常分布を高速に混合し,特徴付ける。
本稿では,事前学習した生成モデルの潜時空間における後部サンプリングを提案する。
論文 参考訳(メタデータ) (2022-06-18T03:47:37Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - MIMO Channel Estimation using Score-Based Generative Models [1.6752182911522517]
本稿では,ディープスコアに基づく生成モデルを用いたチャネル推定手法を提案する。
これらのモデルは、対数-主分布の勾配を推定するために訓練され、観測された信号の測定から推定を反復的に洗練するために使用することができる。
論文 参考訳(メタデータ) (2022-04-14T17:23:58Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
本研究では,ラットおよびヒト脳のデータセット上でのNLLS,RNN法および多層パーセプトロン(MLP)の性能を評価する。
提案手法は,NLLSよりも計算時間を大幅に短縮できるという利点を示した。
論文 参考訳(メタデータ) (2022-03-01T16:33:15Z) - Low Complexity Channel estimation with Neural Network Solutions [1.0499453838486013]
我々は、ダウンリンクシナリオでチャネル推定を実現するために、一般的な残差畳み込みニューラルネットワークをデプロイする。
チャネル推定における他のディープラーニング手法と比較して,平均二乗誤差計算の改善が示唆された。
論文 参考訳(メタデータ) (2022-01-24T19:55:10Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - A Low-Complexity MIMO Channel Estimator with Implicit Structure of a
Convolutional Neural Network [0.0]
単一アンテナユーザを対象とした最小平均二乗誤差チャネル推定器を学習する低複雑性畳み込みニューラルネットワーク推定器を提案する。
パイロットシーケンスの任意の選択に対する推定器の高レベルな記述を導出する。
数値的な結果は最先端のアルゴリズムと比較して性能が向上することを示している。
論文 参考訳(メタデータ) (2021-04-26T15:52:29Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
本稿では,ベイズモデル (BM) とニューラルネットワーク (NN) を組み合わせて,予測を最小限のリスクで行う手法を提案する。
私たちのアプローチは、BMのデータ効率と解釈可能性とNNの速度を組み合わせます。
テストデータセットに無視できる損失がある標準手法よりも、リスク最小限の予測をはるかに高速に達成する。
論文 参考訳(メタデータ) (2021-03-29T15:08:25Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。