論文の概要: DeepCRE: Transforming Drug R&D via AI-Driven Cross-drug Response Evaluation
- arxiv url: http://arxiv.org/abs/2403.03768v3
- Date: Mon, 18 Mar 2024 15:05:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 20:59:05.019567
- Title: DeepCRE: Transforming Drug R&D via AI-Driven Cross-drug Response Evaluation
- Title(参考訳): DeepCRE:AI駆動のクロスドラッグ反応評価を通じてドラッグR&Dを変える
- Authors: Yushuai Wu, Ting Zhang, Hao Zhou, Hainan Wu, Hanwen Sunchu, Lei Hu, Xiaofang Chen, Suyuan Zhao, Gaochao Liu, Chao Sun, Jiahuan Zhang, Yizhen Luo, Peng Liu, Zaiqing Nie, Yushuai Wu,
- Abstract要約: 我々は、薬物研究開発の後期において、クロスドラッグ反応評価(CRE)を効果的に予測するために設計された先駆的なAIモデルであるDeepCREを紹介する。
DeepCREは、患者レベルのCREの平均パフォーマンス改善を17.7%、指示レベルのCREを5倍に向上させることで、既存の最高のモデルより優れている。
- 参考スコア(独自算出の注目度): 19.93243592501178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fields of therapeutic application and drug research and development (R&D) both face substantial challenges, i.e., the therapeutic domain calls for more treatment alternatives, while numerous promising pre-clinical drugs have failed in clinical trials. One of the reasons is the inadequacy of Cross-drug Response Evaluation (CRE) during the late stages of drug R&D. Although in-silico CRE models bring a promising solution, existing methodologies are restricted to early stages of drug R&D, such as target and cell-line levels, offering limited improvement to clinical success rates. Herein, we introduce DeepCRE, a pioneering AI model designed to predict CRE effectively in the late stages of drug R&D. DeepCRE outperforms the existing best models by achieving an average performance improvement of 17.7% in patient-level CRE, and a 5-fold increase in indication-level CRE, facilitating more accurate personalized treatment predictions and better pharmaceutical value assessment for indications, respectively. Furthermore, DeepCRE has identified a set of six drug candidates that show significantly greater effectiveness than a comparator set of two approved drugs in 5/8 colorectal cancer organoids. This demonstrates the capability of DeepCRE to systematically uncover a spectrum of drug candidates with enhanced therapeutic effects, highlighting its potential to transform drug R&D.
- Abstract(参考訳): 治療応用と薬物研究・開発(R&D)の分野はどちらも重大な課題に直面している。
その理由の1つは、薬物R&Dの後期におけるクロスドラッグ反応評価(CRE)の不十分さである。
in-silico CREモデルは有望な解決策をもたらすが、既存の方法論はターゲットや細胞ラインレベルなどの薬物R&Dの初期段階に限られており、臨床成功率に制限がある。
本稿では、薬物研究開発の後期において、CREを効果的に予測する先駆的なAIモデルであるDeepCREを紹介する。
DeepCREは、患者レベルのCREの平均パフォーマンス改善を17.7%、表示レベルのCREを5倍に向上させることで、より正確なパーソナライズされた治療予測と、表示に対する薬価評価を改善することで、既存のベストモデルより優れている。
さらに、DeepCREは、5/8の大腸癌オルガノイドの2つの承認された薬物のコンパレータセットよりもはるかに効果の高い6つの薬物候補を同定した。
このことは、DeepCREが治療効果を増強した薬物候補のスペクトルを体系的に発見する能力を示し、薬物R&Dを変換する可能性を強調している。
関連論文リスト
- Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
目標IC50スコアに基づく条件生成により、より効率的なサンプリングスペースを得ることができる。
回帰自由誘導は、拡散モデルのスコア推定と、数値ラベルに基づく回帰制御モデルの勾配を結合する。
論文 参考訳(メタデータ) (2024-05-23T13:22:17Z) - Zero-shot Learning of Drug Response Prediction for Preclinical Drug
Screening [38.94493676651818]
ゼロショット学習ソリューションを提案する。
予防的薬物スクリーニングの課題です
具体的には、MSDAと呼ばれるマルチブランチマルチソースドメイン適応テスト拡張プラグインを提案する。
論文 参考訳(メタデータ) (2023-10-05T05:55:41Z) - Drug Interaction Vectors Neural Network: DrIVeNN [0.7624669864625037]
ポリファーマシー(英: Poly Pharmacy)とは、複数の薬物を同時に併用して単一の疾患を治療することである。
ポリファーマシーに関連する多くの重篤なADEは、薬物の使用後にのみ知られるようになる。
臨床試験において、あらゆる可能な薬物の組み合わせをテストすることは不可能である。
論文 参考訳(メタデータ) (2023-08-26T14:24:41Z) - ADRNet: A Generalized Collaborative Filtering Framework Combining
Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction [49.56476929112382]
逆薬物反応(ADR)予測は、医療と薬物発見において重要な役割を果たす。
ADRNetは、臨床データと非臨床データを組み合わせた一般的な協調フィルタリングフレームワークである。
論文 参考訳(メタデータ) (2023-08-03T11:28:12Z) - A optimization framework for herbal prescription planning based on deep
reinforcement learning [7.995127222099328]
慢性疾患治療のための深層強化学習(PrescDRL)に基づくTCMハーブ処方計画フレームワークを提案する。
PrescDRLは、全てのステップで最大報酬を得るのではなく、長期的な効果に焦点を当てたシーケンシャルなハーバル処方の最適化モデルである。
以上の結果から,PrescDRLは,医師と比較して1段階の報酬が117%,153%改善した。
論文 参考訳(メタデータ) (2023-04-25T13:55:02Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
医薬品の分子構造とDDIのモデルを明確に活用するために、SafeDrugというDDI制御可能な薬物推奨モデルを提案する。
ベンチマークデータセットでは、SafeDrugはDDIを19.43%削減し、Jaccardの推奨薬物と実際に処方された薬物の組み合わせの2.88%を改善します。
論文 参考訳(メタデータ) (2021-05-05T00:20:48Z) - MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning [61.74958429818077]
MolDesignerは、ドラッグ開発者のためのヒューマン・イン・ザ・ループ・ウェブ・ユーザ・インタフェース(UI)である。
開発者は、インターフェイスに薬物分子を描画することができる。
バックエンドでは、17以上の最先端のDLモデルが、薬物の有効性に不可欠な重要な指標の予測を生成する。
論文 参考訳(メタデータ) (2020-10-05T21:25:25Z) - When deep learning meets causal inference: a computational framework for
drug repurposing from real-world data [12.68717103979673]
既存の薬物精製法は、ヒトに適用した場合に翻訳上の問題が存在する可能性がある。
薬物再資源化のための複数の候補の生成と試験を行うための,効率的かつ簡便なフレームワークを提案する。
本研究の枠組みは, 冠動脈疾患(CAD)の症例研究において, 55の薬剤候補が各種疾患の予後に及ぼす影響を評価することで実証する。
論文 参考訳(メタデータ) (2020-07-16T21:30:56Z) - Network Medicine Framework for Identifying Drug Repurposing
Opportunities for COVID-19 [6.7410870290301]
現在のパンデミックは、SARS-CoV-2感染の潜在的な効果のために、迅速かつ確実に臨床承認された化合物を優先順位付けできる方法の必要性を強調している。
ここでは,人工知能,ネットワーク拡散,ネットワーク近接に頼ったアルゴリズムをデプロイし,SARS-CoV-2に対する効果を期待して,それぞれ6,340の薬物をランク付けする。
ほとんどのアルゴリズムは、これらの基底真理データに対して予測力を提供するが、すべてのデータセットやメトリクスに対して一貫した信頼性のある結果を提供する方法は存在しない。
論文 参考訳(メタデータ) (2020-04-15T17:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。