Many-Objective Multi-Solution Transport
- URL: http://arxiv.org/abs/2403.04099v1
- Date: Wed, 6 Mar 2024 23:03:12 GMT
- Title: Many-Objective Multi-Solution Transport
- Authors: Ziyue Li, Tian Li, Virginia Smith, Jeff Bilmes, Tianyi Zhou
- Abstract summary: Many-objective multi-solution Transport (MosT) is a framework that finds multiple diverse solutions in the Pareto front of many objectives.
MosT formulates the problem as a bi-level optimization of weighted objectives for each solution, where the weights are defined by an optimal transport between the objectives and solutions.
- Score: 36.07360460509921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing the performance of many objectives (instantiated by tasks or
clients) jointly with a few Pareto stationary solutions (models) is critical in
machine learning. However, previous multi-objective optimization methods often
focus on a few number of objectives and cannot scale to many objectives that
outnumber the solutions, leading to either subpar performance or ignored
objectives. We introduce Many-objective multi-solution Transport (MosT), a
framework that finds multiple diverse solutions in the Pareto front of many
objectives. Our insight is to seek multiple solutions, each performing as a
domain expert and focusing on a specific subset of objectives while
collectively covering all of them. MosT formulates the problem as a bi-level
optimization of weighted objectives for each solution, where the weights are
defined by an optimal transport between the objectives and solutions. Our
algorithm ensures convergence to Pareto stationary solutions for complementary
subsets of objectives. On a range of applications in federated learning,
multi-task learning, and mixture-of-prompt learning for LLMs, MosT distinctly
outperforms strong baselines, delivering high-quality, diverse solutions that
profile the entire Pareto frontier, thus ensuring balanced trade-offs across
many objectives.
Related papers
- Pareto Set Learning for Multi-Objective Reinforcement Learning [19.720934024901542]
We propose a decomposition-based framework for Multi-Objective RL (MORL)
PSL-MORL harnesses the generation capability of hypernetwork to produce the parameters of the policy network for each decomposition weight.
We show that PSL-MORL significantly outperforms state-of-the-art MORL methods in the hypervolume and sparsity indicators.
arXiv Detail & Related papers (2025-01-12T10:43:05Z) - Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems [60.91599969408029]
optimizing multiple objectives simultaneously is an important task for recommendation platforms.
Existing multi-objective recommender systems do not systematically consider such dynamic relationships.
arXiv Detail & Related papers (2024-07-04T02:19:49Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
Multi-objective optimization can be found in many real-world applications where some conflicting objectives can not be optimized by a single solution.
We propose a novel Tchebycheff set scalarization method to find a few representative solutions to cover a large number of objectives.
In this way, each objective can be well addressed by at least one solution in the small solution set.
arXiv Detail & Related papers (2024-05-30T03:04:57Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Multi-Target Multiplicity: Flexibility and Fairness in Target
Specification under Resource Constraints [76.84999501420938]
We introduce a conceptual and computational framework for assessing how the choice of target affects individuals' outcomes.
We show that the level of multiplicity that stems from target variable choice can be greater than that stemming from nearly-optimal models of a single target.
arXiv Detail & Related papers (2023-06-23T18:57:14Z) - Multi-Objective GFlowNets [59.16787189214784]
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
arXiv Detail & Related papers (2022-10-23T16:15:36Z) - Alleviating Search Bias in Bayesian Evolutionary Optimization with Many
Heterogeneous Objectives [9.139734850798124]
We deal with multi-objective optimization problems with heterogeneous objectives (HE-MOPs)
A new acquisition function that mitigates search bias towards the fast objectives is suggested.
We demonstrate the effectiveness of the proposed algorithm by testing it on widely used multi-/many-objective benchmark problems.
arXiv Detail & Related papers (2022-08-25T17:07:40Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
We propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME)
Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations.
We evaluate our method on several tasks, from standard optimization problems to robotics simulations.
arXiv Detail & Related papers (2022-02-07T10:48:28Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
We propose an algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way.
We show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.
arXiv Detail & Related papers (2020-05-15T13:02:17Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.