CN-RMA: Combined Network with Ray Marching Aggregation for 3D Indoors Object Detection from Multi-view Images
- URL: http://arxiv.org/abs/2403.04198v2
- Date: Tue, 9 Apr 2024 15:07:08 GMT
- Title: CN-RMA: Combined Network with Ray Marching Aggregation for 3D Indoors Object Detection from Multi-view Images
- Authors: Guanlin Shen, Jingwei Huang, Zhihua Hu, Bin Wang,
- Abstract summary: CN-RMA is a novel approach for 3D indoor object detection from multi-view images.
Our method achieves state-of-the-art performance in 3D object detection from multi-view images.
- Score: 11.152821406076486
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces CN-RMA, a novel approach for 3D indoor object detection from multi-view images. We observe the key challenge as the ambiguity of image and 3D correspondence without explicit geometry to provide occlusion information. To address this issue, CN-RMA leverages the synergy of 3D reconstruction networks and 3D object detection networks, where the reconstruction network provides a rough Truncated Signed Distance Function (TSDF) and guides image features to vote to 3D space correctly in an end-to-end manner. Specifically, we associate weights to sampled points of each ray through ray marching, representing the contribution of a pixel in an image to corresponding 3D locations. Such weights are determined by the predicted signed distances so that image features vote only to regions near the reconstructed surface. Our method achieves state-of-the-art performance in 3D object detection from multi-view images, as measured by mAP@0.25 and mAP@0.5 on the ScanNet and ARKitScenes datasets. The code and models are released at https://github.com/SerCharles/CN-RMA.
Related papers
- MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps [51.44887282336391]
Key challenge of multi-view indoor 3D object detection is to infer accurate geometry information from images for precise 3D detection.
Previous method relies on NeRF for geometry reasoning.
We propose MVSDet which utilizes plane sweep for geometry-aware 3D object detection.
arXiv Detail & Related papers (2024-10-28T21:58:41Z) - PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection [13.60524473223155]
This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects.
PointAD renders 3D anomalies into multiple 2D renderings and projects them back into 3D space.
Our model can directly integrate RGB information, further enhancing the understanding of 3D anomalies in a plug-and-play manner.
arXiv Detail & Related papers (2024-10-01T01:40:22Z) - Bridged Transformer for Vision and Point Cloud 3D Object Detection [92.86856146086316]
Bridged Transformer (BrT) is an end-to-end architecture for 3D object detection.
BrT learns to identify 3D and 2D object bounding boxes from both points and image patches.
We experimentally show that BrT surpasses state-of-the-art methods on SUN RGB-D and ScanNetV2 datasets.
arXiv Detail & Related papers (2022-10-04T05:44:22Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
We propose a method for estimating the 6DoF pose of a rigid object with an available 3D model from a single RGB image.
Unlike classical correspondence-based methods which predict 3D object coordinates at pixels of the input image, the proposed method predicts 3D object coordinates at 3D query points sampled in the camera frustum.
arXiv Detail & Related papers (2022-07-30T01:48:23Z) - Voxel-based 3D Detection and Reconstruction of Multiple Objects from a
Single Image [22.037472446683765]
We learn a regular grid of 3D voxel features from the input image which is aligned with 3D scene space via a 3D feature lifting operator.
Based on the 3D voxel features, our novel CenterNet-3D detection head formulates the 3D detection as keypoint detection in the 3D space.
We devise an efficient coarse-to-fine reconstruction module, including coarse-level voxelization and a novel local PCA-SDF shape representation.
arXiv Detail & Related papers (2021-11-04T18:30:37Z) - Weakly Supervised Volumetric Image Segmentation with Deformed Templates [80.04326168716493]
We propose an approach that is truly weakly-supervised in the sense that we only need to provide a sparse set of 3D point on the surface of target objects.
We will show that it outperforms a more traditional approach to weak-supervision in 3D at a reduced supervision cost.
arXiv Detail & Related papers (2021-06-07T22:09:34Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.