An RNN-policy gradient approach for quantum architecture search
- URL: http://arxiv.org/abs/2405.05892v1
- Date: Thu, 9 May 2024 16:44:35 GMT
- Title: An RNN-policy gradient approach for quantum architecture search
- Authors: Gang Wang, Bang-Hai Wang, Shao-Ming Fei,
- Abstract summary: Variational quantum circuits are one of the promising ways to exploit the advantages of quantum computing.
The design of the quantum circuit architecture might greatly affect the performance capability of the quantum algorithms.
The quantum architecture search is the process of automatically designing quantum circuit architecture.
- Score: 7.616832563471534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum circuits are one of the promising ways to exploit the advantages of quantum computing in the noisy intermediate-scale quantum technology era. The design of the quantum circuit architecture might greatly affect the performance capability of the quantum algorithms. The quantum architecture search is the process of automatically designing quantum circuit architecture, aiming at finding the optimal quantum circuit composition architecture by the algorithm for a given task, so that the algorithm can learn to design the circuit architecture. Compared to manual design, quantum architecture search algorithms are more effective in finding quantum circuits with better performance capabilities. In this paper, based on the deep reinforcement learning, we propose an approach for quantum circuit architecture search. The sampling of the circuit architecture is learnt through reinforcement learning based controller. Layer-based search is also used to accelerate the computational efficiency of the search algorithm. Applying to data classification tasks we show that the method can search for quantum circuit architectures with better accuracies. Moreover, the circuit has a smaller number of quantum gates and parameters.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Distributed quantum architecture search [0.0]
Variational quantum algorithms, inspired by neural networks, have become a novel approach in quantum computing.
Quantum architecture search tackles this by adjusting circuit structures along with gate parameters to automatically discover high-performance circuit structures.
We propose an end-to-end distributed quantum architecture search framework, where we aim to automatically design distributed quantum circuit structures for interconnected quantum processing units with specific qubit connectivity.
arXiv Detail & Related papers (2024-03-10T13:28:56Z) - Qubit-Wise Architecture Search Method for Variational Quantum Circuits [11.790545710021593]
We propose a novel qubit-wise architec-ture search (QWAS) method, which progres-sively search one-qubit configuration per stage.
Our proposed method can balance the exploration and exploitation of cir-cuit performance and size in some real-world tasks, such as MNIST, Fashion and MOSI.
arXiv Detail & Related papers (2024-03-07T07:08:57Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QArchSearch: A Scalable Quantum Architecture Search Package [1.725192300740999]
We present textttQArchSearch, an AI based quantum architecture search package with the textttQTensor library as a backend.
We show that the search package is able to efficiently scale the search to large quantum circuits and enables the exploration of more complex models for different quantum applications.
arXiv Detail & Related papers (2023-10-11T20:00:33Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Quantum Architecture Search via Deep Reinforcement Learning [0.0]
It is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible.
We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge.
We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent.
arXiv Detail & Related papers (2021-04-15T18:53:26Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.