論文の概要: GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
- arxiv url: http://arxiv.org/abs/2403.04483v3
- Date: Mon, 27 Oct 2025 08:07:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 22:08:13.679071
- Title: GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
- Title(参考訳): GraphInstruct: グラフ理解と推論機能を備えた大規模言語モデルの実現
- Authors: Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie, Hai Jin,
- Abstract要約: 本稿では,21の古典的グラフ推論タスクを包括的に含むGraphInstructというベンチマークを提案する。
GraphInstructをベースとして,グラフ理解能力の顕著さを示す効率的な命令チューニングによるGraphrを開発した。
マルチステップグラフ推論機能を備えたLLMをさらに促進するために,ラベルマスクトレーニング戦略を提案し,Graphr+を構築する。
- 参考スコア(独自算出の注目度): 47.69392503009922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
- Abstract(参考訳): 大規模言語モデル(LLM)の一般的な機能を改善することは、活発な研究トピックである。
多くの実世界の領域における共通データ構造として、グラフデータの理解は汎用知能の進歩の重要な部分である。
そこで本稿では,21の古典的グラフ推論タスクを包括的に含み,多様なグラフ生成パイプラインと各サンプルの詳細な中間推論ステップを提供する,GraphInstructという動的ベンチマークを提案する。
GraphInstruct をベースとして,他のオープンソース LLM と比較してグラフ理解能力の顕著な向上を示す,効率的な命令チューニングによる GraphSolver を開発した。
マルチステップグラフ推論機能を備えたLCMをさらに促進するために,中間推論トークンのマスク付き監視を利用して重要なノード識別信号を強調する,ラベルマスクトレーニング戦略とGraphSolver+の構築を提案する。
LLMのグラフ理解と推論能力を高めるための先駆的な取り組みの1つとして、GraphSolverとGraphSolver+が他のLLMよりも優れていることを示した。
GraphInstructは、グラフ構造化データにLLMを適用するためのさらなる研究を促進することを期待しています。
私たちのコードとデータは、https://github.com/CGCL-codes/GraphInstruct.orgで公開されています。
関連論文リスト
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
論文 参考訳(メタデータ) (2024-10-29T00:28:02Z) - What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs [69.48708136448694]
大規模言語モデル(LLM)は、期待される推論能力と推論能力のために、AIコミュニティで再編成されている。
我々は、グラフのこのようなパラメトリック表現、グラフ法則は、LLMがグラフデータを入力として理解させるソリューションであると信じている。
論文 参考訳(メタデータ) (2024-10-16T00:01:31Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding [17.724492441325165]
大規模言語モデル(LLM)は、グラフ記述シーケンスのプロンプトを通じてグラフィカルな構造情報を理解するのに苦労する。
マクロおよびマイクロレベルのグラフィカル情報に対するLLMの理解を改善するための新しいフレームワークであるGraphInsightを提案する。
論文 参考訳(メタデータ) (2024-09-05T05:34:16Z) - Joint Embeddings for Graph Instruction Tuning [0.0]
本研究は,Large Language Models (LLMs) におけるグラフモダリティの統合について検討する。
グラフの埋め込みによって基礎となるLLMを強化し、それを理解できるように訓練するディープラーニングモデルを作ることを目標としている。
このアプローチは、グラフからテキストへのアプローチよりもはるかに優れており、大きなグラフであっても一貫性が保たれている。
論文 参考訳(メタデータ) (2024-05-31T08:26:47Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて幻覚に悩まされる。
既存の研究は、外部知識コーパスから取得した個々のテキスト単位でLLMを拡張することを提案する。
本稿では,グラフを反復的に推論することで,LLMをグラフで拡張するためのGraph Chain-of-thinkt (Graph-CoT) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T15:41:53Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
グラフ生成は、与えられたプロパティを持つグラフを生成するために、大きな言語モデル(LLM)を必要とする。
本稿では,LLMのグラフ生成能力について,系統的なタスク設計と実験による検討を行う。
評価の結果,LLM,特にGPT-4は,グラフ生成タスクに予備的能力を示すことがわかった。
論文 参考訳(メタデータ) (2024-03-21T12:37:54Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via
Prompt Augmented by ChatGPT [10.879701971582502]
我々は,複雑なグラフデータに対する推論能力を備えた大規模言語モデル(LLM)の開発を目指している。
最新のChatGPTおよびToolformerモデルに触発された我々は、外部グラフ推論APIツールを使用するために、ChatGPTによって強化されたプロンプトでLLM自体を教えるためのGraph-ToolFormerフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-10T05:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。