Dynamics of the Non-equilibrium spin Boson Model: A Benchmark of master equations and their validity
- URL: http://arxiv.org/abs/2403.04488v2
- Date: Sat, 14 Sep 2024 13:27:20 GMT
- Title: Dynamics of the Non-equilibrium spin Boson Model: A Benchmark of master equations and their validity
- Authors: Gerardo Suárez, Marcin Łobejko, Michał Horodecki,
- Abstract summary: We consider a non-Markovian, yet completely positive evolution for the Spin-Boson model with an Overdamped Drude-Lorentz spectral density and arbitrary coupling.
We find the cumulant to be a better description in the weak coupling regime where it is supposed to be valid.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been tremendous focus on identifying whether effective descriptions of open quantum systems such as master equations, can accurately describe the dynamics of open quantum systems. One particular question is whether they provide the correct steady state in the long time limit. Transient regime is also of interest. Description of evolution by various master equations - some of them being not complete positive - is benchmarked against exact solutions (see e.g. Hartmann and Strunz, Phys. Rev. A 101, 012103). An important property of true evolution is its non-Markovian features, which are not captured by the simplest completely positive master equations. In this paper we consider a non-Markovian, yet completely positive evolution (known as refined weak coupling or cumulant equation) for the Spin-Boson model with an Overdamped Drude-Lorentz spectral density and arbitrary coupling. We bench-marked it against numerically exact solution, as well as against other master equations, for different coupling strengths and temperatures. We find the cumulant to be a better description in the weak coupling regime where it is supposed to be valid. For the examples considered it shows superiority at moderate and strong couplings in the low-temperature regime for all examples considered. In the high-temperature regime however its advantage vanishes. This indicates that the cumulant equation is a good candidate for simulations at weak to moderate coupling and low temperature. Our calculations are greatly facilitated due to our concise formulation of the cumulant equation by means of representation of the density matrix in the SU(N) basis.
Related papers
- Quantum master equation from the eigenstate thermalization hypothesis [0.20971479389679332]
We show that the emergence of Markovianity is controlled by the spectral function of the ETH.
We numerically verify this result by comparing the master equation to dynamics computed using exact diagonalization of a chaotic Hamiltonian.
arXiv Detail & Related papers (2024-11-12T10:44:00Z) - Noether's razor: Learning Conserved Quantities [16.81984465529089]
We parameterise symmetries as learnable conserved quantities.
We then allow conserved quantities and associated symmetries to be learned directly from train data.
We find that our method correctly identifies the correct conserved quantities and U($n$) and SE($n$) symmetry groups.
arXiv Detail & Related papers (2024-10-10T16:29:49Z) - Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Dynamics of Pseudoentanglement [0.03320194947871346]
dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems.
Recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states.
This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems?
arXiv Detail & Related papers (2024-03-14T17:54:27Z) - Hybrid completely positive Markovian quantum-classical dynamics [0.0]
derivation of hybrid quantum-classical dynamics is given in terms of Markovian master equations.
Goal is a brief introduction to state-of-the-art of hybrid dynamics.
arXiv Detail & Related papers (2023-02-26T22:10:38Z) - Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery [17.736465741047315]
We introduce a framework to learn a discrete Lagrangian along with its symmetry group from discrete observations of motions.
The learning process does not restrict the form of the Lagrangian, does not require velocity or momentum observations or predictions and incorporates a cost term.
arXiv Detail & Related papers (2022-11-20T00:46:33Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Towards reconciliation of completely positive open system dynamics with
the equilibration postulate [0.09545101073027092]
We provide a general form of the proper thermal equilibrium state for an arbitrary open system.
We show that the solution coincides with the mean-force Hamiltonian for the Bloch-Redfield equation.
arXiv Detail & Related papers (2022-04-01T18:05:07Z) - Lindblad master equations for quantum systems coupled to dissipative
bosonic modes [0.0]
We derive Lindblad master equations for a subsystem whose dynamics is coupled to bosonic modes.
We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins.
This master equation accurately predicts the Dicke phase transition and gives the correct steady state.
arXiv Detail & Related papers (2022-03-07T11:21:48Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Quantum systems correlated with a finite bath: nonequilibrium dynamics
and thermodynamics [0.0]
We derive a master equation that accounts for system-bath correlations and includes, at a coarse-grained level, a dynamically evolving bath.
Our work paves the way for studying a variety of nanoscale quantum technologies including engines, refrigerators, or heat pumps.
arXiv Detail & Related papers (2020-08-05T15:19:29Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.