論文の概要: Quantifying Contamination in Evaluating Code Generation Capabilities of
Language Models
- arxiv url: http://arxiv.org/abs/2403.04811v1
- Date: Wed, 6 Mar 2024 21:45:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 22:06:19.388569
- Title: Quantifying Contamination in Evaluating Code Generation Capabilities of
Language Models
- Title(参考訳): 言語モデルのコード生成能力評価における汚染の定量化
- Authors: Martin Riddell, Ansong Ni, Arman Cohan
- Abstract要約: 大規模言語モデルは、様々なコード生成ベンチマークで顕著なパフォーマンスを達成した。
これらのベンチマークが事前トレーニングや微調整のデータにリークされる可能性があるため、潜在的な汚染に関する懸念が高まっている。
我々は、人気のあるコード生成ベンチマークとオープントレーニングコーパスの間にかなりの重複があることを示し、トレーニング中に同様のソリューションが見られたベンチマークのサブセットにおいて、モデルの性能が大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 27.24738197172374
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While large language models have achieved remarkable performance on various
code generation benchmarks, there have been growing concerns regarding
potential contamination of these benchmarks as they may be leaked into
pretraining and finetuning data. While recent work has investigated
contamination in natural language generation and understanding tasks, there has
been less extensive research into how data contamination impacts the evaluation
of code generation, which is critical for understanding the robustness and
reliability of LLMs in programming contexts. In this work, we perform a
comprehensive study of data contamination of popular code generation
benchmarks, and precisely quantify their overlap with pretraining corpus
through both surface-level and semantic-level matching. In our experiments, we
show that there are substantial overlap between popular code generation
benchmarks and open training corpus, and models perform significantly better on
the subset of the benchmarks where similar solutions are seen during training.
We also conduct extensive analysis on the factors that affects model
memorization and generalization, such as model size, problem difficulty, and
question length. We release all resulting files from our matching pipeline for
future research.
- Abstract(参考訳): 大規模言語モデルは、様々なコード生成ベンチマークで顕著なパフォーマンスを達成したが、事前トレーニングや微調整データにリークされる可能性があるため、これらのベンチマークの潜在的な汚染に関する懸念が高まっている。
最近の研究は自然言語生成と理解タスクの汚染を調査しているが、データ汚染がコード生成の評価にどのように影響するかに関する広範な研究は少なく、これはプログラミングコンテキストにおけるllmの堅牢性と信頼性を理解する上で重要である。
本研究では,一般的なコード生成ベンチマークのデータ汚染を包括的に研究し,表面レベルと意味レベルのマッチングによって事前学習コーパスとの重なりを正確に定量化する。
実験では、一般的なコード生成ベンチマークとオープントレーニングコーパスの間にかなりの重複があることを示し、同様のソリューションがトレーニング中に見られるベンチマークのサブセットにおいて、モデルの方が大幅に優れたパフォーマンスを示す。
また,モデルのサイズ,問題難易度,質問長など,モデル記憶化や一般化に影響を与える要因を広範囲に分析する。
将来の研究のために、マッチングパイプラインから得られたすべてのファイルをリリースします。
関連論文リスト
- A Preliminary Study of Multilingual Code Language Models for Code Generation Task Using Translated Benchmarks [0.0]
コード生成のために構築されたオープンソースの多言語CLMであるPoly-Coderの性能を評価する。
以上の結果から,これらのベンチマークで得られた結果は,トレーニングフェーズで使用する評価指標とよく一致していることがわかった。
これらの初期の洞察は、より包括的な実証研究の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-11-23T06:40:47Z) - Are Large Language Models Memorizing Bug Benchmarks? [6.640077652362016]
大規模言語モデル(LLM)は、コード生成、バグ検出、修復など、様々なソフトウェアエンジニアリングタスクに不可欠なものになっている。
ソフトウェアエンジニアリングコミュニティの懸念は、ベンチマークがデータ漏洩のリスクのため、真のLLMパフォーマンスを確実に反映していないことだ。
一般的なLSMを系統的に評価し、広く使われているバグベンチマークからデータ漏洩に対する感受性を評価する。
論文 参考訳(メタデータ) (2024-11-20T13:46:04Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Benchmarking Benchmark Leakage in Large Language Models [24.015208839742343]
本稿では,モデル予測精度をベンチマークで評価する2つの単純かつスケーラブルな指標であるPerplexityとN-gramの精度を利用した検出パイプラインを提案する。
テストセットの誤用さえも、トレーニングのかなりの例を明らかにし、潜在的に不公平な比較を行う。
ベンチマーク利用の明確なドキュメンテーションを促進するために,ベンチマーク透明性カードを提案する。
論文 参考訳(メタデータ) (2024-04-29T16:05:36Z) - Code Needs Comments: Enhancing Code LLMs with Comment Augmentation [91.52444946362547]
本稿では、既存のコードに対するコメントを生成する新しいデータ拡張手法と、自然言語と相関の低いコードデータをフィルタリングするデータフィルタリング戦略を導入する。
我々は3つのコード中心の大規模言語モデルの実験を行い、2つの広く使われているプログラミングスキルベンチマークで一貫した性能向上を観察した。
論文 参考訳(メタデータ) (2024-02-20T13:56:38Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Data Contamination Through the Lens of Time [21.933771085956426]
大規模言語モデル(LLM)は一般に利用可能なベンチマークを評価することでしばしばサポートされる。
このプラクティスは、データ汚染の懸念、すなわち、トレーニングデータに明示的にまたは暗黙的に含まれている例を評価することを提起する。
GPTモデルにおけるトレーニングカットオフの自然実験を用いて, LLMにおけるデータ汚染の経時的解析を行った。
論文 参考訳(メタデータ) (2023-10-16T17:51:29Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - Benchmarking Causal Study to Interpret Large Language Models for Source
Code [6.301373791541809]
本稿では,3つのSEタスクをキュレートしたテストベッドからなるGalerasというベンチマーク戦略を紹介する。
本稿では,ChatGPTの性能に関するケーススタディを,個別の迅速なエンジニアリング手法で実施することで,ベンチマーク戦略の知見を述べる。
論文 参考訳(メタデータ) (2023-08-23T20:32:12Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。